www.barbatti.org

# Basic Concepts on Surface Hopping (as in implemented in Newton-X)

### Mario Barbatti

Aix Marseille University, CNRS, ICR, Marseille, France The Light & Molecules Group mario.barbatti@univ-amu.fr

### The Light and Molecules Group www.barbatti.org

Methods

Mixed quantum-classical dyn

Software Newton-X ULAMDYN PySOC Applications

Photoprocesses in

Fundamental PhysChem

Molecular biology

Organic devices

Environment

### The Light and Molecules Group www.barbatti.org

Mario Barbatti (PI)

Josene Toldo (postdoc) Max Pinheiro Jr (postdoc) Saikat Mukherjee (postdoc)

Baptiste Demoulin (IT researcher)

Mariana Casal (PhD candidate) Ritam Mansour (PhD candidate) Elizete Ventura (visiting researcher) Silmar Monte (visiting researcher)

Mattia Bondanza (internship) Soumaya Moussa (internship) Nesrine Haddaji (internship) Mansi Bhati (internship) Mithun M (internship)

### Special thanks to



# HOW CAN WE SIMULATE EXCITED-STATE MOLECULAR DYNAMICS?

Photochemical and photophysical phenomena in molecules involve the time evolution of the nuclear wavepacket through a manifold of electronic states



Modeling these processes requires considering the coupling between the nuclear and electronic motions (nonadiabatic regime)

### Nonadiabatic Mixed Quantum-Classical dynamics (NA-MQCD)

1. Nuclei are treated via *classical trajectories* 

2. Electrons are treated *quantum mechanically* 

3. A nonadiabatic algorithm ensures introduces *post Born-Oppenheimer effects* 

• Tully. J Chem Phys **1990**, 93, 1061.

• Review: Crespo-Otero; Barbatti. Chem Rev 2018, 118, 7026





Reaction coordinate

- Tully. J Chem Phys 1990, 93, 1061.
- Review: Crespo-Otero; Barbatti. Chem Rev 2018, 118, 7026



# THE NEWTON-X PLATFORM



### **The Newton-X platform**

- Surface hopping & Nuclear ensemble spectrum simulations
- Freeware
- Open source

- Barbatti; Ruckenbauer; Plasser; Pittner; Granucci; Persico; Lischka. WIREs 2014, 4, 26
- Barbatti; Granucci; Persico; Ruckenbauer; Vazdar; Eckert-Maksić; Lischka. J Photochem Photobiol A 2007, 190, 228



| Electronic structure                                                      | Program         |
|---------------------------------------------------------------------------|-----------------|
| MRCI, MCSCF (+MM)                                                         | COLUMBUS        |
| XMS-CASPT2, CASSCF (+MM)                                                  | BAGEL           |
| MCSCF                                                                     | GAMESS          |
| MCSCF                                                                     | GAUSSIAN        |
| (LR, RI) CC2, (SOS) ADC(2) (+MM)                                          | TURBOMOLE       |
| (LR) (TDA), TD(U)DFT, (U)CIS                                              | Gaussian        |
| (LR) TDDFT                                                                | TURBOMOLE       |
| (LR) LC-TD-DFTB                                                           | Dftb+           |
| Machine learning                                                          | MLATOM          |
| Spin Boson Hamiltonian<br>2D Conical intersection<br>1D models collection | Built-in models |



### **Core developers**

M Barbatti (FR) R Crespo-Otero (UK) J Pittner (CZ) M Ruckenbauer (AT), F Plasser (UK) H Lischka (US) G Granucci, M Persico (IT)

#### LIGHT AND MOLECULES

leak

### **Development team in Marseille**

| S Mukherjee   | Vibronic effects, ZPE |
|---------------|-----------------------|
| M Pinheiro Jr | Machine learning      |
| B Demoulin    | Newton-X NS           |
| M Bondanza    | Polarizable FF        |
|               |                       |

### Contributors

JW Park, T Shiozaki (US): J Nagesh, A Izmaylov (CA): A West, T Windus (US): X Gao (US): P Dral (CN):

CASPT2 dynamics OD couplings GAMESS interface SOC matrix Machine learning

### **External developers**

M Pederzoli (CZ):ISC dynamicsL Stojanović (UK):TD-DFTB dynamicsW Arbelo-González (US):Photoelectron spectrumF Kossoski (FR):CS-FSSH, import samplingP Goel (DE):Zero-model interface



### Cyclohexadiene



Polyak; Hutton; Crespo-Otero; Barbatti; Knowles. *JCTC* **2019**, *15*, 3929

#### LIGHT AND MOLECULES

### **XMS-CASPT2**

•14 atoms

- 3 electronic states
- •150 trajectories
- •0.4 ps/trajectory

•0.5 fs time step



Cycloparaphenylene



Stojanović; Aziz; Hilal; Plasser; Niehaus; Barbatti. *JCTC* **2017**, *13*, 5845

#### LIGHT AND MOLECULES

### **TD-LC-DFTB**

- •100 atoms
- •7 electronic states
- 50 trajectories
- 3 ps/trajectory
- •0.5 fs time step



- MQC-PE: Dynamics induced by thermal light Barbatti. J Chem Theory Comput 2020, 16, 4849
- NAE-ML: Nuclear ensemble spectra with machine learning Xue; Barbatti; Dral. *J Phys Chem A* **2020**, *124*, 7199
- **CS-FSSH: Nonadiabatic dynamics on complex-valued PES** Kossoski; Barbatti. *Chem Sci* **2020**, *11*, 9827
- **TD-BA: Nonadiabatic couplings evaluation without wave functions** T. do Casal; Toldo; Pinheiro Jr; Barbatti. *Open Res Europe* **2021**, *1*, 49



- Simulation of time-resolved UV pump–IR probe spectra Fingerhut; Dorfman; <u>Mukamel</u>. *J Phys Chem Lett* **2013**, *4*, 1933
- Nonadiabatic dynamics with ONIOM <u>Fingerhut</u>; Oesterling; Haiser; Heil; Glas; Schreier; Zinth; Carell; de Vivie-Riedle. *J Chem Phys* 2012, 136, 204307
- Fast evaluation of time-derivative nonadiabatic couplings Ryabinkin; Nagesh; <u>Izmaylov</u>. *J Phys Chem Lett* **2015**, *6*, 4200
- On-the-fly Dynamics with CASPT2 analytical gradients Park; <u>Shiozaki</u>. *JCTC* **2017**, *13*, 3676

# **DYNAMICS WITH DC-FSSH**





#### > \$NX/nxinp

#### LIGHT AND MOLECULES

NEWTON-X Newtonian dynamics close to the crossing seam www.newtonx.org

\_\_\_\_\_\_\_\_\_\_

MAIN MENU

1. GENERATE INITIAL CONDITIONS

2. SET BASIC INPUT

3. SET GENERAL OPTIONS

4. SET NONADIABATIC DYNAMICS

5. GENERATE TRAJECTORIES AND SPECTRUM

6. SET STATISTICAL ANALYSIS

7. EXIT

Select one option (1-7): 1 <ENTER>



### **1. Treat Nuclei classically on a single BO surface**

$$\frac{d^2 \overline{\mathbf{R}}}{dt^2} = \frac{1}{M_{\alpha}} \mathbf{F}(\overline{\mathbf{R}}) \qquad \qquad \mathbf{F}(\overline{\mathbf{R}}) = -\nabla_{\alpha} E_L$$

$$\overline{\mathbf{R}}_{\alpha}(t + \Delta t) = \overline{\mathbf{R}}_{\alpha}(t) + \overline{\mathbf{v}}_{\alpha}(t)\Delta t + \frac{1}{2}\overline{\mathbf{a}}_{\alpha}(t)\Delta t^{2}$$
$$\mathbf{v}_{m}^{c}\left(t + \frac{\Delta t}{2}\right) = \overline{\mathbf{v}}_{\alpha}(t) + \frac{1}{2}\mathbf{a}_{m}^{c}(t)\Delta t$$
$$\overline{\mathbf{a}}_{\alpha}(t) = -\frac{1}{M}\nabla_{R}E\left[\overline{\mathbf{R}}_{\alpha}(t + \Delta t)\right]$$

LIGHT AND

MOLECULES

$$\overline{\mathbf{v}}_{\alpha}(t + \Delta t) = \overline{\mathbf{v}}_{\alpha}\left(t + \frac{\Delta t}{2}\right) + \frac{1}{2}\overline{\mathbf{a}}_{\alpha}(t + \Delta t)\Delta t$$

• Swope; Andersen; Berens; Wilson. J Chem Phys 1982, 76, 637

### Time-step

#### LIGHT AND MOLECULES

|   | Vibrational mode                                                     | Wavelength of<br>absorption $[\text{cm}^{-1}]$ | Absorption<br>frequency $[s^{-1}]$ | Period [fs] | Period/# [fs] |
|---|----------------------------------------------------------------------|------------------------------------------------|------------------------------------|-------------|---------------|
|   | Vibrational mode                                                     | (1/\)                                          | $(v = c/\lambda)$                  | (1/v)       | Period/# [Is] |
| _ | O—H stretch<br>N—H stretch                                           | 3200-3600                                      | $1.0 	imes 10^{14}$                | 9.8         | 3.1           |
| _ | C—H stretch                                                          | 3000                                           | $9.0	imes10^{13}$                  | 11.1        | 3.5           |
|   | O-C-O asymmetric stretch                                             | 2400                                           | $7.2 \times 10^{13}$               | 13.9        | 4.5           |
|   | C=C, C=N stretch                                                     | 2100                                           | $6.3	imes10^{13}$                  | 15.9        | 5.1           |
|   | C=O (carbonyl) stretch<br>C=C stretch                                | 1700                                           | $5.1 	imes 10^{13}$                | 19.6        | 6.2           |
|   | H–O–H bend                                                           | 1600                                           | $4.8 \times 10^{13}$               | 20.8        | 6.4           |
|   | C−N−H bend<br>H−N−H bend<br>C=C (aromatic) stretch                   | 1500                                           | $4.5\times10^{13}$                 | 22.2        | 7.1           |
|   | C-N stretch (amines)                                                 | 1250                                           | $3.8	imes10^{13}$                  | 26.2        | 8.4           |
|   | Water Libration<br>(rocking)                                         | 800                                            | $2.4\times10^{13}$                 | 41.7        | 13            |
|   | O-C-O bending<br>C=C-H bending (alkenes)<br>C=C-H bending (aromatic) | 700                                            | $2.1 \times 10^{13}$               | 47.6        | 15            |

#### Table 1 Some typical vibrational modes<sup>a</sup>

<sup>a</sup>All values are approximate; a range is associated with each motion depending on the system. The value of  $c = 3.00 \times 10^{10}$  cm s<sup>-1</sup>. The last column indicates the timestep limit for leap-frog stability for a harmonic oscillator:  $\Delta t < 2/\omega = 2/(2\pi\nu)$ .

#### • Schlick; Barth; Mandziuk. Annu Rev Biophys Struct 1997, 26, 181

#### Wavelength of Absorption absorption [cm<sup>-1</sup>] frequency [s<sup>-1</sup>] Period [fs] Vibrational mode $(1/\lambda)$ $(v = c/\lambda)$ (1/v)Period/ $\pi$ [fs] O-H stretch $1.0 \times 10^{14}$ 9.8 3200-3600 3.1 N-H stretch $9.0 \times 10^{13}$ C-H stretch 3000 11.1 3.5

#### Table 1 Some typical vibrational modes<sup>a</sup>

Time step should smaller than 1 fs (1/10v)

 $\Delta t = 0.5$  fs assures a good level of conservation of energy

Exceptions:

- Dynamics close to the conical intersection may require 0.25 fs
- Dissociation processes may require even smaller time steps

### **2. Solve the locally-approximated TDSE**

$$\frac{dc_J}{dt} = -\sum_{K} \left(\frac{i}{\hbar} E_L + \sigma_{JK}\right) c_K$$

• Tully. J Chem Phys 1990, 93, 1061

$$\frac{dc_{J}}{dt} = -\sum_{K \neq J} c_{K} e^{i\gamma_{JK}} \sigma_{JK}$$
$$\gamma_{JK} = \frac{1}{\hbar} \int_{0}^{t} \left( E_{J} \left( \mathbf{R}(t') \right) - E_{K} \left( \mathbf{R}(t') \right) \right) dt'$$

• Ferretti; Granucci; Lami; Persico; Villani. J Chem Phys **1996**, 104, 5517

### The TDSE is solved with standard methods (Unitary Propagator, Adams Moulton 6<sup>th</sup>-order, Butcher 5<sup>th</sup>-oder)



sh.inp: INTEGRATOR = integration algorithm

sh.inp: MS = number of substeps



### **3. Introduce nonadiabatic events via surface hoppings** MOLECULES

 $P_{L \to J} = \frac{\text{Population increment in } J \text{ due to flux from } L \text{ during } \Delta \tau}{\text{Population of } L}$ 

 $\rho_{LJ} = c_L c_J^*$ 

$$P_{L \to J}(t) = \max\left[0, \frac{-2\Delta t}{\left|c_{L}(t)\right|^{2}}\sigma_{LJ}(t)\operatorname{Re}\left(c_{J}(t)c_{L}^{*}(t)\right)\right]$$

sh.inp: TULLY = 0

$$\sum_{K=1}^{J-1} P_{L \to K} < r_t \le \sum_{K=1}^J P_{L \to K}$$

• Tully. J Chem Phys 1990, 93, 1061

### 4. Correct momentum to conserve energy

$$\mathbf{v}_{\alpha}^{(J)} = \mathbf{v}_{\alpha}^{(L)} + \gamma_{LJ} \frac{\mathbf{u}_{\alpha}}{M_{\alpha}}$$
sh.inp:  

$$ADJMON = 0$$

$$\gamma_{LJ} = \begin{cases} \frac{-b + \sqrt{\Delta}}{2a} & \text{if } |-b + \sqrt{\Delta}| < |-b - \sqrt{\Delta}| \\ \frac{-b - \sqrt{\Delta}}{2a} & \text{if } |-b + \sqrt{\Delta}| \ge |-b - \sqrt{\Delta}| \end{cases}$$

$$a \equiv \frac{1}{2} \sum_{\alpha} \frac{\mathbf{u}_{\alpha} \cdot \mathbf{u}_{\alpha}}{M_{\alpha}}$$

$$b \equiv \sum_{\alpha} \left( \mathbf{v}_{\alpha}^{(L)} \cdot \mathbf{u}_{\alpha} \right)$$

$$\Delta \equiv b^{2} - 4a\Delta E_{LJ}$$
If  $\Delta < 0$ , hopping is not allowed

sh.inp: ADJMON = **u** direction

LIGHT AND

MOLECULES

Barbatti. JCTC 2021, 17, 3010. •

### **5. Correct for decoherence**

Decoherence correction with SDM (simplified decay of mixing):

$$c_{K}^{new} = c_{K}e^{-\Delta\tau/\tau_{KL}}, \quad \forall K \neq L,$$

$$c_{L}^{new} = \frac{c_{L}}{|c_{L}|} \left[1 - \sum_{K \neq L} |c_{K}^{new}|^{2}\right]^{1/2}$$

$$\frac{1}{\tau_{KL}^{SDM}} = \frac{|E_{K} - E_{L}|}{\hbar} \left(C + \frac{\varepsilon}{\overline{K}_{n}}\right)^{-1}$$

sh.inp DECAY =  $\varepsilon$  value

• Granucci; Persico. J Chem Phys 2007, 126, 134114

### Fewest Switches Surface Hopping on Complex-Valued Surfaces (CS-FSSH)

Kossoski; Barbatti. Chem Sci 2020, 11, 9827





### **I. h** is a narrow function, which diverges at small gaps:

$$\mathbf{h}_{JL} = \left\langle \psi_{J} \left| \nabla \psi_{L} \right\rangle = \frac{\left\langle \psi_{J} \left| \nabla H \left| \psi_{L} \right\rangle \right.}{E_{L} - E_{J}}$$

### **Dynamics near intersections**



$$P_{L \to J} = \max\left[0, \left(1 - \frac{\left|c_{L}\left(t + \Delta t\right)\right|^{2}}{\left|c_{L}\left(t\right)\right|^{2}}\right) \frac{\operatorname{Re}\left(c_{J}\left(t + \Delta t\right)\Pi_{JL}^{*}c_{L}^{*}\left(t\right)\right)}{\left|c_{L}\left(t\right)\right|^{2} - \operatorname{Re}\left(c_{L}\left(t + \Delta t\right)\Pi_{LL}^{*}c_{L}^{*}\left(t\right)\right)}\right]\right]$$

 $\mathbf{c}(t+\Delta t) = \mathbf{U}(t)\mathbf{c}(t)$ 

**U** and **I** are functions of the overlaps  $\langle \Psi_I(t) | \Psi_J(t + \Delta t) \rangle$ 

• Granucci; Persico; Toniolo. J Chem Phys 2001, 114, 10608

sh.inp: VDOTH = -1


• Plasser; Granucci; Pittner; Barbatti; Persico; Lischka. J Chem Phys 2012, 137, 22A514

### **II. h** has an arbitrary phase

Two calculations for the same geometry may give +h or –h.

### **Phase correction**

$$\cos\left(\theta_{n_{c}}\right) = \frac{\mathbf{h}_{n_{c}}\left(t\right)}{\left|\mathbf{h}_{n_{c}}\left(t\right)\right|} \cdot \frac{\mathbf{h}_{n_{c}}\left(t - \Delta t\right)}{\left|\mathbf{h}_{n_{c}}\left(t - \Delta t\right)\right|} \quad \left(n_{c} = 1, \cdots, n_{coup}\right)$$

$$n_{phase n} = \begin{cases} 1 & \text{if } \cos\left(\theta_{n_{c}}\right) \ge 0 \\ 0 & 0 \end{cases}$$

$$n_{phase,n_c} = \begin{cases} 1 & \ln \cos(\theta_{n_c}) \ge 0\\ -1 & \text{if } \cos(\theta_{n_c}) < 0 \end{cases}$$

$$\mathbf{h}_{n_c}^{(corrected)}(t) = n_{phase,n_c} \mathbf{h}_{n_c}(t)$$

**III. h** is not always available

### Hammes-Schiffer-Tully (HST) approach

$$\sigma_{JK}^{NAC}\left(t + \frac{\Delta t}{2}\right) \approx \frac{1}{2\Delta t} \left[S_{JK}\left(t + \Delta t\right) - S_{KJ}\left(t + \Delta t\right)\right]$$
$$S_{JK}\left(t\right) = \left\langle\psi_{J}\left(t - \Delta t\right) \middle|\psi_{K}\left(t\right)\right\rangle$$

• Hammes-Schiffer; Tully. J Chem Phys 1994, 101, 4657

$$\sigma_{JK}^{NAC}(t) \approx \frac{1}{4\Delta t} \Big[ 3S_{JK}(t) - 3S_{KJ}(t) - S_{JK}(t - \Delta t) + S_{KJ}(t - \Delta t) \Big],$$

• Pittner; Lischka; Barbatti. Chem Phys 2009, 356, 147

LIGHT AND

MOLECULES

HST for linear-response methods

$$|\Psi_{K}\rangle = \sum_{ia} C_{ia}^{K} |\Theta_{i}^{a}\rangle$$

$$C_{ia}^{K} = \begin{cases} R_{ia}^{K}, L_{ia}^{K} & for & \text{CC2} \\ M_{ia}^{K} & for & \text{ADC}(2) \\ (X+Y)_{ia}^{K} & for & \text{TDDFT}; \text{TD-DFTB} \end{cases}$$

• Plasser; Crespo-Otero; Pederzoli; Pittner; Lischka; Barbatti. JCTC 2014, 10, 1395

### **Determinant derivative (DD)**

General determinants with multiple excitations but slow

• Pittner; Lischka; Barbatti. Chem Phys 2009, 356, 147

## **Orbital derivative (OD)**

Fast but singly-excited determinants only

• Ryabinkin; Nagesh; Izmaylov. J Phys Chem Lett 2015, 6, 4200

jiri.inp: CPROG = 1

jiri.inp: CPROG = 2

## Time-dependent Baeck-An (TD-BA)

$$\sigma_{JL} \approx \begin{cases} \frac{\operatorname{sgn}\left(\Delta E_{JL}\right)}{2} \sqrt{\frac{1}{\Delta E_{JL}}} \frac{d^{2} \Delta E_{JL}}{dt^{2}} & \text{if } \frac{1}{\Delta E_{JL}} \frac{d^{2} \Delta E_{JL}}{dt^{2}} > 0 \\ 0 & \text{if } \frac{1}{\Delta E_{JL}} \frac{d^{2} \Delta E_{JL}}{dt^{2}} \leq 0 \end{cases}$$

Available in Newton-X 2.2 b15 and above

• T. do Casal; Toldo; Pinheiro Jr; Barbatti. Open Res Europe **2021**, *1*, 49

sh.inp: VDOTH = 2

## **INITIAL CONDITIONS AND SPECTRUM**

To initiate the simulation of a trajectory we need initial conditions:

- Initial geometry
- Initial velocity
- Initial electronic state
- Initial TDSE coefficients

geom file

veloc file

control.dyn: NSTATDYN

wf.inp (optional)





### To get them, we build an ensemble of $\{\mathbf{R},\mathbf{P}\}$ nuclear points.



Method 1: Probability distribution functions

For a molecule represented as  $3N_{at}$ -6 quantum harmonic oscillators in the vibrational ground state,  $P_W$  is:

$$P_{W}(\mathbf{q},\mathbf{p}) = \prod_{i=1}^{N_{F}} \frac{\alpha_{i}}{\pi\hbar} \exp\left(-\frac{2\alpha_{i}}{\hbar\omega_{i}} \left(\frac{\mu_{i}\omega_{i}^{2}q_{i}^{2}}{2} + \frac{p_{i}^{2}}{2\mu_{i}}\right)\right)$$
$$\alpha_{i} = \tanh\left(\frac{\hbar\omega_{i}}{2k_{B}T}\right)$$

• Schinke, Photodissociation Dynamics, Cambridge, 1993.

$$P_{W}(\mathbf{q},\mathbf{p}) = \prod_{i=1}^{N_{F}} \frac{\alpha_{i}}{\pi\hbar} \exp\left(-\frac{2\alpha_{i}}{\hbar\omega_{i}}\left(\frac{\mu_{i}\omega_{i}^{2}q_{i}^{2}}{2} + \frac{p_{i}^{2}}{2\mu_{i}}\right)\right)$$

### First way of using this equation:

Uncorrelated sampling. Sample  $q_i$  and  $p_i$  randomly

initqp\_input: NACT = 2

Advantage: it's a true Wigner distribution Disadvantage: broad total energy distribution

$$\langle E_{tot} \rangle \pm \sigma = \sum_{i=1}^{3N_{at}-6} \frac{\hbar \omega_i}{2\alpha_i} \pm \sqrt{\sum_{i=1}^{3N_{at}-6} \left(\frac{\hbar \omega_i}{2\alpha_i}\right)^2}$$

$$P_{W}(\mathbf{q},\mathbf{p}) = \prod_{i=1}^{N_{F}} \frac{\alpha_{i}}{\pi\hbar} \exp\left(-\frac{2\alpha_{i}}{\hbar\omega_{i}}\left(\frac{\mu_{i}\omega_{i}^{2}q_{i}^{2}}{2} + \frac{p_{i}^{2}}{2\mu_{i}}\right)\right)$$

### Second way of using this equation:

Correlated sampling. Sample  $q_i$  randomly and get  $p_i$  as

$$p_i = r_{\sqrt{\mu_i}} \left( \frac{\hbar \omega_i}{\alpha_i} - \mu_i \omega_i^2 q_i^2 \right)$$

initqp\_input: NACT = 3

Advantage: narrow total energy distribution. Disadvantage: it's not a true Wigner distribution Method 2: Trajectories

LIGHT AND MOLECULES

Run trajectories in the ground state





After a long time (~1 ns), the distribution of points will reflect the probability of finding the molecule with each  $(\mathbf{R},\mathbf{P})$ 

Pick up ~500 points from the trajectories

Method 3: Random velocities

For a fixed geometry, create random velocities satisfying:

$$\mathbf{v}_0 = \sqrt{\frac{2T_0}{\sum_{\alpha} M_{\alpha} v_{\alpha}^2}} \mathbf{v}_r$$

initqp\_input: NACT = 5

 $T_0$  – initial kinetic energy

 $\mathbf{v}_r$  – random velocity (without translational and rotational components)

• Sellner; Barbatti; Lischka. J Chem Phys 2009, 131, 024312

# Trajectory x distribution samplings



Thermal amplitudes at 300 K are much smaller than quantum amplitudes with ZPE.

This difference is especially important for large wavenumbers.

• Barbatti; Sen. Int J Quantum Chem 2016, 116, 762.



The ground state energy distribution in a *Q* ensemble and in a *T* ensemble are completely different.



The *Q* distribution of geometries is much broader than the *T*.

The effect is larger for bigger wavenumbers.



Simulations of excited-state trajectories have a very clear starting point: The photo excitation, which is taken as instantaneous and defining t = 0.



To define the initial state, we should take care of state crossings. In this example, geometry  $R_1$  should start in  $S_2$ , while  $R_2$  should start in  $S_1$ .



Accept initial condition if:

1. 
$$\left|\Delta E_{1N}\left(\mathbf{R}_{i}\right) - \varepsilon\right| \leq \delta \varepsilon$$
  
2.  $r \leq \frac{f_{1N}\left(\mathbf{R}_{i}\right)}{f_{0N}^{\max}}$   $r = random(0,1)$ 

### nxinp:

Select initial conditions for multiple excited states

#### LIGHT AND

MOLECULES



• Barbatti; Pittner; Pederzoli; Werner; Mitrić; Bonačić-Koutecký; Lischka. Chem Phys 2010, 375, 26

## Mixed Quantum-Classical Dynamics with Pulse Ensemble (MQC-PE)

### **Cis-Trans Isomerization of Retinal**

| Туре       | Light source      | τ       |
|------------|-------------------|---------|
| Coherent   | fs-Laser pulse    | 200 fs  |
| Incoherent | Extra-terrestrial | 42 µs   |
|            | Earth surface     | 56 µs   |
|            | Scotopic vision   | 96 days |

## **Dynamics with thermal light: MQC-PE**



LIGHT AND MOLECULES

• Barbatti. JCTC 2020, 16, 4849



The sum over the excitations in the ensemble gives an approximation for the absorption spectrum

$$\sigma^{pa}(E) = \frac{\pi e^2 \hbar}{2m_e c \varepsilon_0 E} \sum_{L}^{N_{fs}} \frac{1}{N_p} \sum_{n}^{N_p} \Delta E_{1L}(\mathbf{R}_n) f_{1L}(\mathbf{R}_n) w_s \left( E - \Delta E_{1L}(\mathbf{R}_n), \delta \right)$$

mkd.inp: PROB\_KIND = F

If the sampling is done in the minimum of  $S_1$ , the sum is an approximation for the fluorescence spectrum:

$$\Gamma_{fl}(E) = \frac{e^2}{2\pi\hbar m_e c^3 \varepsilon_0} \frac{1}{N_p} \sum_{n=1}^{N_p} \Delta E_{21}(\mathbf{R}_n)^2 |f_{21}(\mathbf{R}_n)| w_s (E - \Delta E_{21}(\mathbf{R}_n), \delta)$$

mkd.inp: PROB\_KIND = E





• Crespo-Otero, Barbatti, Theor Chem Acc **131**, 1237 (2012)

## Nuclear Ensemble Approach Based on Machine Learning (ML-NEA)

• Xue; Barbatti; Dral. J Phys Chem A 2020, 124, 7199



**ML-NEA** 

LIGHT AND MOLECULES

- Automatic determination of optimal training set size
- Few hundred points for statistically converged results
- ML-training and predictions are extremely fast (minutes)



• Tutorial available at <u>mlatom.com/tutorial/tutorial-mlnea/</u>

# ELEMENTS OF STATISTICAL ANALYSIS

Margin of error for a sample proportion


Margin of error for a sample average

$$\varepsilon = 1.96 \frac{s}{\sqrt{N}} \qquad N > 30$$



$$\varepsilon = 1.96 \frac{1}{\sqrt{100}} = 0.196 \text{ ps}$$

$$\tau = 1.0 \pm 0.2 \text{ ps}$$

#### We know that

N > 30 $N \times p > 5$ 

How many trajectories do we need?

If we want to analyse p > 10%

$$\left[ N > 50 \right]$$



Comparing error bars

LIGHT AND MOLECULES

Compared to CASPT2, which functional does make the best prediction?



 $\lambda$  analysis



• Barbatti. *JCTC* **2021**, *17*, 3010



 $\lambda_x^{(1,2)} = 1$ : perfect agreement  $\lambda_x^{(1,2)} = 0$ : no agreement at all

• Barbatti. JCTC 2021, 17, 3010

Comparing error bars

LIGHT AND MOLECULES

Compared to CASPT2, which functional does make the best prediction?



 $\Lambda$  analysis for many observables

$$\Lambda^{(1,2)} = \frac{1}{N_o} \sum_{x} \lambda_x^{(1,2)}$$

LIGHT AND MOLECULES

 $\Lambda^{(1,2)} = 1$ : perfect agreement  $\Lambda^{(1,2)} = 0$ : total disagreement

• Barbatti. JCTC 2021, 17, 3010

FSSH dependence on velocity adjustment direction

#### LIGHT AND MOLECULES

H H



# HOW MUCH DOES SURFACE HOPPING COST?

Basic cost estimate

LIGHT AND MOLECULES



• Price 100,000 CPU.h = 2,000 €

- How much does dynamics cost? tinyurl.com/dyncost
- How many trajectories should we run? tinyurl.com/trajs

$$T_{total} \approx N_{\text{Trajectories}} \times \frac{\tau_{\text{chem process}}}{\Delta \tau} \times T_{\text{Single Point}}$$

Two strategies have been followed to cope with computational costs:

IGH

MOLECULES

TAND

- Statistical ensembles are reduced, which affects the precision of the calculations
   ✓ Reduce N<sub>trajectories</sub>
  - ✓ Reduce  $\tau_{\text{chem process}}$
  - ✓ Increase  $\Delta \tau$
- Electronic structure methods are downgraded, which affects the accuracy of the simulations
   ✓ Reduce T<sub>Single Point</sub>

# ELECTRONIC STRUCTURE



| Electronic structure                                                      | Program         |  |  |  |
|---------------------------------------------------------------------------|-----------------|--|--|--|
| MRCI, MCSCF (+MM)                                                         | COLUMBUS        |  |  |  |
| XMS-CASPT2, CASSCF (+MM)                                                  | BAGEL           |  |  |  |
| MCSCF                                                                     | GAMESS          |  |  |  |
| MCSCF                                                                     | GAUSSIAN        |  |  |  |
| (LR, RI) CC2, (SOS) ADC(2) (+MM)                                          | TURBOMOLE       |  |  |  |
| (LR) (TDA), TD(U)DFT, (U)CIS                                              | Gaussian        |  |  |  |
| (LR) TDDFT                                                                | TURBOMOLE       |  |  |  |
| (LR) LC-TD-DFTB                                                           | Dftb+           |  |  |  |
| Machine learning                                                          | MLATOM          |  |  |  |
| Spin Boson Hamiltonian<br>2D Conical intersection<br>1D models collection | Built-in models |  |  |  |

control.dyn: PROG

#### TSH with single-reference: does it make sense?

#### LIGHT AND MOLECULES #StayAtHome



While dynamics doesn't reach  $\sum |SR\rangle$  or  $\tau_{ij}^{ab} |SR\rangle$  regions, SR methods may be a reliable option for NA-MQCD

• Plasser; Crespo-Otero; Pederzoli; Pittner; Lischka; Barbatti. JCTC 2014, 10, 1395



### Ground-state population at 1 ps

#### LIGHT AND MOLECULES



• Plasser; Crespo-Otero; Pederzoli; Pittner; Lischka; Barbatti. JCTC 2014, 10, 1395

### The worst of the worlds: extreme method dependence



- Plasser; Crespo-Otero; Pederzoli; Pittner; Lischka; Barbatti. JCTC 2014, 10, 1395
- PT2: Park; Shiozaki. JCTC 2017, 13, 3676

The root of all evil



- No affordable method can describe **all characters at the same level**
- Excited-state spectral region has high density of states
- Small variation in geometry leads to a change of electronic character

| Problem                                                                                                                                 | <b>Methods affected</b>                             | Solution / workaround                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overshoot of ionic states                                                                                                               | MCSCF, CASSCF                                       | Use fully correlated methods. Scaled CASSCF                                                                                                                                                |
| Orbital exchange between subspaces                                                                                                      | MCSCF, CASSCF                                       | Enlarge active space                                                                                                                                                                       |
| Intruder states                                                                                                                         | CASPT2                                              | Enlarge active space. Use level shifts                                                                                                                                                     |
| Unphysical responses when the<br>difference between the excitation<br>energies of two states matches the<br>excitation of a third state | Any LR method                                       | Avoid systems showing crossings with the ground state                                                                                                                                      |
| Numerical instabilities near crossings<br>between excited states                                                                        | LR coupled cluster                                  | Use a Hermitian method like ADC                                                                                                                                                            |
| Numerical instabilities near crossings<br>with the ground state                                                                         | Single reference methods                            | Avoid systems showing crossing with $S_0$ . Stop trajectory<br>at the crossing. $D_1$ and $D_2$ diagnostics for MP and CC may<br>help to detect MR character of $S_0$ . Increase DFT grid. |
| Wrong dimensionality of intersections<br>with the ground state                                                                          | CIS-type, LR, SS-CASPT2                             | Avoid systems showing crossing with the ground state.<br>Stop trajectories at the crossing. Use SF                                                                                         |
| Negative excitations                                                                                                                    | Methods giving only excitation energies, like in LR | Stop trajectories at the crossing with the ground state                                                                                                                                    |
| Wrong dissociation                                                                                                                      | Single reference methods                            | TDA may help in TDDFT. $D_1$ and $D_2$ diagnostics for MP and CC may help to detect the problem in ADC and CC                                                                              |
| Underestimated charge transfer states                                                                                                   | LR TDDFT                                            | Use range-separated functionals                                                                                                                                                            |
| Missing double and higher excitations                                                                                                   | LR ADC(2), LR ALDA TDDFT                            | Use another method to monitor higher excitations. Use SF                                                                                                                                   |
| Underestimation of high-energy states                                                                                                   | LR TDDFT                                            | Use LC-corrected functionals                                                                                                                                                               |
| Undesired C=O dissociation                                                                                                              | ADC(2)                                              | Try TDDFT                                                                                                                                                                                  |
| Lack of ring puckering                                                                                                                  | TDDFT                                               | Try ADC(2)                                                                                                                                                                                 |

# NEWTON-X NS



Since 2005, NEWTON-X has been used in over 200 studies of nonadiabatic dynamics and spectra of photoexcited molecules.

## **PERL:** for t = 0 until $t = t_{max}$

 $E_{\kappa}, \nabla E_{\kappa}, |\psi_{\kappa}\rangle =$ **PERL**: call EXTERNAL PROGRAM (**R**)

**R**, **v** = call **FORTRAN:** VELOCITY VERLET (**R**, **v**,  $\nabla E_L$ )

 $\sigma_{LK}$  = call C++: COUPLING (  $|\psi_L\rangle$ ,  $|\psi_K\rangle$  )

*L* = call **FORTRAN**: SURFACE HOPPING( $E_{K}, \sigma_{LK}, \mathbf{v}_{L}$ )

 $t = t + \Delta t$ 

- I/O Excess
- Convoluted code
- Nonoptimized routines
- Nonoptimized data format
- Unclear development protocol

## NEWTON-X NS: tackling the challenges

## **Speed-up execution**

- Rewriting core loop
- Minimize I/O

## **Optimize development environment**

IIGHT AND

MOLECULES

- Restructuring variable management
- GitLab UI
- Clear development protocol

## **Comply with new open data standard**

• HDF5 data standard (H5MD)

## **Keep established functionalities**

• Deep-level cleaning & debugging



**Running-Time Test** 

LIGHT AND MOLECULES

Surface Hopping Dynamics of Spin-Boson Hamiltonian Dimensions = 10  $t_{max}$  = 1000 fs  $\Delta t$  = 0.1 fs  $N_{cores}$  = 1



## **NEWTON-X NS** Release in the fall 2021

# TUTORIAL: FULVENE DYNAMICS



• T. do Casal; Toldo; Pinheiro Jr; Barbatti. Open Res Europe 2021, 1, 49



• T. do Casal; Toldo; Pinheiro Jr; Barbatti. Open Res Europe 2021, 1, 49

### Method / programs

• DC-FSSH with Newton-X / Columbus

### **Electronic structure**

• SA2-CAS(6,6)/6-31G\*

### **Initial conditions**

- Uncorrelated Wigner sampling
- Excitation window:  $4.00 \pm 0.34 \text{ eV}$

### Surface hopping

- Number of states: 2
- Initial state: S<sub>1</sub>
- Classical timestep: 0.1 fs
- TDSE timestep: 0.2/20 fs
- Trajectory duration: 60 fs
- Columbus interface
- Nonadiabatic couplings vectors
- Decoherence: SDM 0.1 au

#### Tasks:

- 1. Prepare Columbus input for initial conditions
- 2. Compute initial conditions
- 3. Compute spectrum
- 4. Select initial conditions
- 5. Prepare Columbus input for trajectories
- 6. Prepare and run trajectories
- 7. Analyse

#### Tasks:

- 1. Prepare Columbus input for initial conditions
- 2. Compute initial conditions
- 3. Compute spectrum
- 4. Select initial conditions

Dalton int.  $C_1$  point group. 6-31G\*. No SCF. No gradient. SA2-CAS(6,6). Single point. MCSCF. Transition moment for MCSCF.

5. Prepare Columbus input for trajectories
6. Prepare and run trajectories
7. Analyse
5. Dalton int. C<sub>1</sub> point group. 6-31G\*. No SCF. Gradient for MCSCF. SA2-CAS(6,6). Single point. MCSCF. Nonadiabatic coupling. Transition moment for MCSCF. Full coupling. No slope analysis.

System: Fulvene Point Group: C1

N. Electrons: 42 Multiplicity: 1

Level: SA2-CAS(6,6)/6-31G\*

|                                 | -                         |    |       |      |  | <br> | <br> |
|---------------------------------|---------------------------|----|-------|------|--|------|------|
|                                 |                           | Α  |       |      |  |      |      |
| SCF                             | DOCC                      | 21 |       |      |  |      |      |
|                                 | OPSH                      | _  |       |      |  |      |      |
| MCSCF                           | DOCC                      | 18 |       |      |  |      |      |
|                                 | RAS                       | 0  |       |      |  |      |      |
|                                 | CAS                       | 6  |       |      |  |      |      |
|                                 | AUX                       | 0  |       |      |  |      |      |
| State                           | Multiplicity N. electrons |    | Symme | etry |  |      |      |
| 1                               | 1                         |    | 42    |      |  |      |      |
| 2                               | 1                         |    | 42    | А    |  |      |      |
| Number of distinct rows (DRTs): |                           | 1  |       |      |  |      |      |

IRREP



- General info: <u>www.barbatti.org</u>
- Contact: <u>mario.barbatti@univ-amu.fr</u> <u>@MarioBarbatti</u>

