Fewest switches surface hopping with the TD-DFTB method (with the Newton-X code)

Instructor: Prof. Mario Barbatti Aix-Marseille Universite

Co-instructor : Ljiljana Stojanovic University College London

FSSH algorithm

I Initial conditions sampling Wigner distribution

Barbatti, M. (2011), WIREs Comput Mol Sci, 1: 620-633.

A flowchart of the Newton-X code.

FSSH algorithm

A flowchart of the Newton-X code.

II Dynamics propagation

$$\varphi(\mathbf{r}, \mathbf{R}^{c}, t) = \sum_{j} c_{j}(t) \Phi_{j}(\mathbf{r}; \mathbf{R}^{c}(t))$$

$$\left(i\hbar \frac{\partial}{\partial t} - H_{e}\right) \varphi(\mathbf{r}, \mathbf{R}, t) = 0$$

$$\downarrow$$

$$i\hbar \frac{dc_k}{dt} + \sum_j \left(-H_{kj}^c + i\hbar \mathbf{F}_{kj}^c \cdot \mathbf{v}^c \right) c_j = 0$$
$$\mathbf{F}_{kj}^{c,m} \equiv \left\langle \Phi_k \left| \nabla_{\mathbf{R}_m} \right| \Phi_j \right\rangle_{\mathbf{r}} \left\langle \Phi_k \left| \frac{\partial}{\partial t} \right| \Phi_j \right\rangle_{\mathbf{r}} = \mathbf{F}_{kj}^c \cdot \mathbf{v}^c$$

Solutions are *c* coefficients.

FSSH algorithm

A flowchart of the Newton-X code.

III Hopping probabilities

$$\rho_{lk}(t) = c_l c_k^*$$

$$\downarrow$$

$$P_{l \to k} = \max \left[0, -\frac{2\Delta t}{\rho_{ll}} \operatorname{Re}(\rho_{kl}) F_{kl}^c \cdot v^c \right]$$

IV Newton equations propagation

$$\frac{d^2 \mathbf{R}_m^c}{dt^2} - \frac{\mathbf{F}_m^c}{M_m} = 0$$

Density functional tight binding (DFTB)

Density represented by Taylor expansion around reference density (atomic density)

Solutions: KS orbitals and orbital energies

Approximations: 1. Minimal STO atomic orbital set. 2. Only valence orbitals considered. 3. Non-diag. elements of $E[\rho_{a}]$ precomputed and stored. (SK files) 4. Diagonal el. Are precomputed atomic orbital E. 5. Mulliken approximation: p fluctuations via atomic point charges. 6. Parameterization of the remaining Hamiltonian terms (Hubbard parameters).

Linear-response TD-DFTB

TD-DFTB equation

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$

$$A_{ia,jb} = \delta_{ij}\delta_{ab}(\varepsilon_a - \varepsilon_i) + (ialljb)$$
$$B_{ia,jb} = (iallbj)$$

Solutions: |X+Y> vectors and excitation energies

Excited state wave function representation (Casida's Ansatz)

$$|\psi_{J}\rangle = \sum_{i,a} (X + Y)^{J}_{ia} |\Phi_{ia}\rangle$$

They are used in nonadiabatic couplings computations.

Approximation: Mulliken approximation in orbital transition densities (in 2e integrals).

Number of terms in the expansion:					
Nocc·Nvirt					
Frozen core discarded					

DFTB+ program - important features

- Second and third order expansion of electron density;
- GGA and long-range corrected functionals;
- Analytical gradients in the ground and excited states (for GGA and LC);
- Dispersion interactions (Lennard-Jones, Slater-Kirkwood, D3 correction);
- Analytical nonadiabatic coupling vectors (recent implementation);
- AIMD subroutines coupled with several thermostats and barostats.

Linear-response TD-DFTB

Advantages:

- Speedup in the energies and gradients computation (wrt the conventional TD-DFT, whereas the accuracy is similar);
- Speedup in the computation of nonadiabatic couplings
- (due to decreased dimension of the excited states' wave functions);
- Possibility to use long-range corrected functionals;
- Analytic gradients available for both TD-DFTB and TD-LC-DFTB.

Disadvantages:

- Single-determinant method

(instabilities in the case of ground state degeneracy, like Cis with the ground state);

- Number of excited states limited

Example: water molecule

Nocc = 4; Nvirt = 2; N(SPX) = 8

It is possible to compute only 8 excited states;

- Only GGA and LR-corrected functionals available.

Applications of the FSSH/TD-DFTB method

FSSH dynamics of cycloparaphenylenes

Due to the low computational cost it is possible to simulate extended systems for longer simulation times.

Time: 3ps Number of excited states: 7 Number of atoms: 100 (80)

Other features:

- Analysis of exciton character (THEODORE code);
- Normal mode analysis during dynamics.

Stojanović; Aziz; Hilal; Plasser; Niehaus; Barbatti. JCTC 2017, 13, 5845

Test case: Spectrum and dynamics of tetrathiophene in vacuum

To be able to follow this tutorial, please:

1. connect to your accounts with ssh X forwarding:

ssh -X username@vortex.ccr.buffalo

2. load:

module load nx/2.2-B09

3. cp -rf /projects/academic/cyberwksp21/Software/inputs/tddftb_dynamics /your_folder

or cp -rf /user/ub2036/tddftb_dynamics /your_folder

Approach

Method / programs

- FSSH with Newton-X / DFTB+ (versions 17.1 and 2.2)

Electronic structure

- TD-DFTB/3ob-3-1 SK set

Initial conditions

- Uncorrelated Wigner sampling

Surface hopping

- Number of states: 1 and 5
- Initial state: S_1 , S_5
- Classical timestep: 0.5 fs
- TDSE timestep: 0.5/20 fs
- Trajectory duration: variable
- DFTB+ interface
- Nonadiabatic couplings:

OD method

- Decoherence: SDM 0.1 au

Steps

- 1. Optimize ground state geometry and compute excited states
- 2. Prepare DFTB+ input for initial conditions
- 3. Compute initial conditions
- 4. Compute spectrum
- 5. Select initial conditions
- 6. Prepare DFTB+ input for dynamics
- 7. Prepare and run trajectories
- 8. Analyse

DFTB+ input for the initial conditions

DFTB+ input for the initial conditions

Excited states and absorption spectrum MOLECULES

Excited states at the FC geometry (EXC.DAT):

w [eV]	Osc.Str.	Transition	We	eight KS	S [eV]	Sym.	
3.395 3.837 4.675 4.875	1.48761085 0.00000015 0.00059685 0.05366545	49 -> 48 -> 49 -> 47 ->	50 50 51 50	1.000 0.732 0.733 0.943	2.864 3.816 3.837 4.847	S S S	
4.905	0.19709801	48 ->	50 51	0.816	4.789	S	Excited states mostly
5.206 5.229	0.00000056 0.01537105	46 ->	50 50	1.000	5.096	<u> </u>	 dominated by a single
5.389 5.491	0.00007371 0.02525593	44 -> 43 ->	50 50	0.998 0.999	5.195 5.276	S S	determinant.
5.775 5 824	0.16757419	49 -> 42 ->	52 50	0.687 0.946	4.905 5 739	S S	
5.846	0.00000181	47 ->	50 51	0.718	5.820	S	
5.962 6.230	0.00008187 0.00336394	49 ->	53 51	0.850	5.914 6.069	S S	
6.280 6.298	0.00002509 0.05246536	45 -> 44 ->	51 51	0.998 0.989	6.096 6.168	S S	
		-					

Excited states and absorption spectrum MOLECULES

E(eV) f

3.395	1.48761085
3.837	0.00000015
4.675	0.00059685
4.875	0.05366545
4.905	0 19709801
5.206	0.00000056
5.229	0.01537105
5.389	0.00007371
5.491	0.02525593
5.775	0.16757419
5.824	0.00000456
5.846	0.00000181
5.962	0.00008187
6.230	0.00336394
6.280	0.00002509
6.298	0.05246536

Selecting initial conditions for dynamics MOLECULES

1. Energy windows applied to filter the ICs for dynamics around maxima of the bands.

2. The first band mainly arises in transition to the S_1 state. (dynamics from S_1)

Adiabatic dynamics (the S_0 - S_1 gap criterion)

3. The S₄ and S₅ states mainly contribute to the second band.
(dynamics from S₄ and S₅)
Nonadiabatic dynamics

FSSH dynamics from the S_5 state

Ground and excited state energies during dynamics in a single trajectory.

The first 100 fs of dynamics initiated from the S_{r} state.

- During the first 100 fs of dynamics, 4T remains on the S_3 - S_5 manifold (mostly in the S_3 state);
- S_1 and S_2 states are separated from the higher S_3 - S_5 manifold;

- Longer simulation times necessary to reach the population of the lower excited states;

- This is in agreement with the simulated spectrum (two bands are well-separated).

Visualization:
\$NX/plot
(input RESULTS/en.dat)

FSSH dynamics from the S_{f} state

Ground and excited state energies during dynamics in a single trajectory.

A 300 fs trajectory initiated from the S_{5} state.

- After 150 fs of dynamics, the lower excited states start to populate;

- S_1 state becomes the most dominantly populated in the last 100 fs;

- The internal conversion to the ground state does not occur during the firat 300 fs of dynamics; (the S0/S1 gap is approx. 2 eV by the end of dynamics)

- It is possible to visualise molecular motions during dynamics.

Useful information from the NX output files

RESULTS/en.dat - energies of all states during dynamics.

0.00-40.532823-40.436870-40.425699-40.403833-40.399496-40.396262-40.396262-40.2699100.50-40.527020-40.431031-40.419455-40.398434-40.393951-40.390864-40.390864-40.2699901.00-40.518937-40.423205-40.411335-40.391049-40.386603-40.383993-40.383993-40.2699601.50-40.509622-40.414441-40.402387-40.382800-40.378427-40.376112-40.376112-40.2698862.00-40.500551-40.406142-40.394014-40.375199-40.370825-40.368584-40.368584-40.269787

RESULTS/dyn.out - Information about hopping, geometries, velocities, energies, real and imaginary parts of wf for each time step.

 STEP
 6
 Molecular dynamics on state 5
 TIME =
 3.00 fs

 Type of dyn. =
 4
 N. of hoppings =
 1
 N. of rejec. Hoppings =
 0

 Time
 Etot
 Ekin
 Epot E0,
 E1, ...
 0.092451
 -40.396170
 -40.384079
 -40.366954
 -40.362177
 -40.359788

 Wave function state
 1:
 0.00000000000
 0.00000000000
 0.00000000000
 Wave function state
 2:
 -0.00922517920283
 -0.00506322662525

RESULTS/sh.out - Information about integration of TD Schrodinger equation.

|v.h|= 0.000000 0.000000 -0.000759 0.000000 -0.000137 0.001141 0.000000 0.000144 0.000518 0.003257 0.000000 0.000383 -0.000474 -0.000207 -0.002456
181 10 5 0.000000000 1.000000000
0.000005922
0.003064893
0.337904351
0.575519351
0.083505482

Useful information from the NX output files

RESULTS/typeofdyn.dat - current excited state and energy separation from lower/higher state.

 Time =
 1.50
 Threshold=****
 PES = 6
 DE_inf = 0.06
 DE_sup = ---- Type = 2
 Next type = 2

 Time =
 2.00
 Threshold=****
 PES = 6
 DE_inf = 0.06
 DE_sup = ---- Type = 2
 Next type = 2

 Time =
 2.50
 Threshold=****
 PES = 5
 DE_inf = 0.12
 DE_sup = 0.06
 Type = 2
 Next type = 4

 Time =
 3.00
 Threshold=****
 PES = 5
 DE_inf = 0.13
 DE_sup = 0.07
 Type = 4
 Next type = 4

 Time =
 3.50
 Threshold=****
 PES = 5
 DE_inf = 0.14
 DE_sup = 0.08
 Type = 4
 Next type = 4

 Time =
 4.00
 Threshold=****
 PES = 5
 DE inf = 0.14
 DE sup = 0.10
 Type = 4
 Next type = 4

RESULTS/report.ci - All state pairs with Ediff smaller than a threshold during dynamics.

 Report points with energy gap smaller than 0.200 eV

 Time (fs) =
 0.00
 State I = 5
 STATE J = 4
 |DE| (eV) = 0.118

 Time (fs) =
 0.00
 State I = 6
 STATE J = 5
 |DE| (eV) = 0.088

 Time (fs) =
 0.50
 State I = 5
 STATE J = 4
 |DE| (eV) = 0.122

 Time (fs) =
 0.50
 State I = 6
 STATE J = 5
 |DE| (eV) = 0.084

 Time (fs) =
 1.00
 State I = 5
 STATE J = 4
 |DE| (eV) = 0.121

RESULTS/tprob - Random seed and hopping probabilities at all electronic substeps.

Statistical analysis of trajectories

For a set of finished trajectories:

- 1. \$NX/diagnostic.pl
- 2. \$NX/nxinp (option 6)

\$NX/analysis.pl > analysis.log

Interactive analysis for the test case of pentacene dynamics.

Thank you very much for your attention :) !