

Photoexcited dynamics in molecular materials with Nonadiabatic EXcited state Molecular Dynamics (NEXMD) code

Sergei Tretiak Walter Malone

CyberTraining Workshop, Buffalo University

June 18, 2021

Overcoming the NAMD numerical expense

10 ps excited state dynamics;
 0.05 fs time-step for electronic dynamics
 500 trajectories

Surface hopping (FSSH), Ehrenfest or ab initio multiple cloning with multiconfigurational Ehrenfest (AIMC-MCE);

Efficient semiempirical calculations of the excited states at TDHF or CIS level (Krylov space algorithms);

Analytic gradients for excited state potential energy surfaces and *non-adiabatic couplings;*

Various types of the excited state MD (Langevin, Anderson thermostats, energy conserving dynamics, etc.);

Decoherence corrections, treatment of trivial crossings, state-specific solvation (PCE or QM/MM), extended Lagrangian =dynamics, open shells, polaritons, etc. **10⁹** calculations of excited states

NEXMD allows calculations ~1000 atoms molecules and ~10ps timescales

NEXMD

Open-source release version https://github.com/lanl/NEXMD

- Excited states/dynamics
- TSH, Ehrenfest
- Trivial crossings, decogherence
- > Solvent effects
- Extended Lagrangian dynamics

Developmental Version (mainly supported by Walter Malone)

- MCE-AIMC suite
- Open shells
- Polaritonics
- Automatic state reduction

PySeQM

Open-source release version

https://github.com/lanl/PYSEQM

- (mainly supported by Guiqing Zhou)
- Front end machine learning fitting of Hamiltonians.
 PyTorch, backpropagation utility
- Very fast ground state quantum dynamics, GPU based, SP2 acceleration, extended Lagrangian

CHEMICAL REVIEWS

pubs.acs.org/CR

Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials

Tammie R. Nelson, Alexander J. White, Josiah A. Bjorgaard, Andrew E. Sifain, Yu Zhang, Benjamin Nebgen, Sebastian Fernandez-Alberti, Dmitry Mozyrsky, Adrian E. Roitberg,* and Sergei Tretiak*

Cite This: Chem. Rev. 2020, 120, 2215-2287

Additional Literature:

"NEXMD Software Package for Non-adiabatic Excited State Molecular Dynamics Simulations" J. Chem. Theory Comput. **16**, 5771 – 5783 (2020). "GPU-Accelerated Semi-Empirical Born Oppenheimer Molecular Dynamics using PyTorch" J. Chem. Theory Comput. **16**, 4951 – 4962 (2020). "First Principles Non-Adiabatic Excited-State Molecular Dynamics in NWChem Software" J. Chem. Theory Comput. **16**, 6418 – 6427 (2020).

Developmental version (mainly supported by Wilson Song)

- Some NEXMD capabilities implemented in NWChem software
- > No-adiabatic dynamics with TDDFT
- TSH, MCE-AIMC, trivials, decoherence, etc.

Review

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- > Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

Basic use: non-radiative relaxation modeling

Developers: new methodologies, deep understanding

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

Basic use: non-radiative relaxation modeling

Developers: new methodologies, deep understanding

Photoexcited dynamics

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

Basic use: non-radiative relaxation modeling

Developers: new methodologies, deep understanding

The molecular Hamiltonian

$$\begin{split} \hat{H} &= -\sum_{A} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{A>B} \frac{Z_{A} Z_{B}}{R_{AB}} - \sum_{Ai} \frac{Z_{A}}{r_{Ai}} + \sum_{i>j} \frac{1}{r_{ij}} \\ \hat{H} &= \hat{T}_{N}(\mathbf{R}) + \hat{T}_{e}(\mathbf{r}) + \hat{V}_{NN}(\mathbf{R}) + \hat{V}_{eN}(\mathbf{r}, \mathbf{R}) + \hat{V}_{ee}(\mathbf{r}) \end{split}$$

"EXACT" nonrelativistic Hamiltonian in absence of field, i.e. quantum system of particles interacting with Coulomb potential

Atomic units (au) sets to be unity:

Electron mass m_e Elementary charge eReduced Planck's constant $\hbar = h/(2\pi)$ Coulomb's constant $1/(4\pi\epsilon_0)$

What is neglected? Relativistic mass corrections (mostly inner electrons in heavy atoms), the most important is spinorbit couplings (L*S)

The Born-Oppenheimer Approximation

Given separable Hamiltonian $\hat{H} = \hat{H}_1(q_1) + \hat{H}_2(q_2)$ for $\hat{H}\psi(q_1, q_2) = E\psi(q_1, q_2)$ Then $\psi(q_1, q_2) = \psi_1(q_1)\psi_2(q_2)$ (factorization) and $E = (E_1 + E_2)$ (additive)

$$\hat{H} = \hat{T}_N(\mathbf{R}) + \hat{T}_e(\mathbf{r}) + \hat{V}_{NN}(\mathbf{R}) + \hat{V}_{eN}(\mathbf{r}, \mathbf{R}) + \hat{V}_{ee}(\mathbf{r})$$

Approximately separable! $\phi_T(\mathbf{r}, \mathbf{R}) = \phi_e(\mathbf{r}; \mathbf{R}) \phi_N(\mathbf{R})$

$$\hat{H}\phi_e(\mathbf{r};\mathbf{R})\phi_N(\mathbf{R}) = E_{tot}\phi_e(\mathbf{r};\mathbf{R})\phi_N(\mathbf{R})$$

$$\begin{split} & \textit{Electronic problem:} \quad \hat{H}_e = \hat{T}_e(\mathbf{r}) + \hat{V}_{eN}(\mathbf{r}; \mathbf{R}) + \hat{V}_{ee}(\mathbf{r}) \\ & \hat{H}_e \phi_e(\mathbf{r}; \mathbf{R}) = \left\{ -\frac{1}{2} \sum_i \nabla_i^2 - \sum_{A,i} \frac{Z_A}{r_{Ai}} + \sum_{i>j} \frac{1}{r_{ij}} \right\} \phi_e(\mathbf{r}; \mathbf{R}) = E_e(\mathbf{R}) \phi_e(\mathbf{r}; \mathbf{R}) \\ & \textit{Nuclei problem:} \quad \{ \hat{T}_N + E_e + \hat{V}_{NN} \} \phi_N(\mathbf{R}) = E_{tot} \phi_N(\mathbf{R}) \\ & \hat{H}_N \phi_N(\mathbf{R}) = \left\{ -\sum_A \frac{1}{2M_A} \nabla_A^2 + E_e(\mathbf{R}) + \sum_{A>B} \frac{Z_A Z_B}{R_{AB}} \right\} \phi_N(\mathbf{R}) = E_{tot} \phi_N(\mathbf{R}) \end{split}$$

i.e., the nuclei move in a potential created by the electrons.

Bottom line: The Born-Oppenheimer Approximation allows definition of potential energy surfaces $E(\mathbf{R})$, introducing 'states' and permitting, e.g., for ab initio MD adopting classical nuclei

Time-dependent Schrödinger equation (TDSE)

General form TDSE

$i\hbar \frac{\partial \Psi(\boldsymbol{R}, \boldsymbol{r}, t)}{\partial t} = \hat{H}(\boldsymbol{R}, \boldsymbol{r}) \Psi(\boldsymbol{R}, \boldsymbol{r}, t)$ $\hat{H}(\boldsymbol{R}, \boldsymbol{r}) = \hat{T}(\boldsymbol{R}) + \hat{H}_{el}(\boldsymbol{R}, \boldsymbol{r})$

Adiabatic and diabatic representation

$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{a} \psi_{a}(\mathbf{r}, \mathbf{R}) \chi_{a}(\mathbf{R}, t) = \sum_{a} \phi_{a}(\mathbf{r}) \chi_{a}'(\mathbf{R}, t)$$
Adiabatic Diabatic

 $\widehat{H}_{el}(\mathbf{r}, \mathbf{R}) \psi_a(\mathbf{r}, \mathbf{R}) = E_a(\mathbf{R}) \psi_a(\mathbf{r}, \mathbf{R})$ $\langle \psi_a(\mathbf{r}, \mathbf{R}) | \psi_b(\mathbf{r}, \mathbf{R}) \rangle_r = \delta_{ab}$ Adiabatic **electronic wavefunctions** (eigenfunctions) are found in quantum chemistry with $E_a(\mathbf{R})$ defining potential energy surfaces (PESs)

Time-dependent Schrödinger equation (TDSE) for nuclei wavefunctions: central to this lecture

$$i\hbar \frac{\partial \chi_a(\mathbf{R},t)}{\partial t} = \begin{bmatrix} -\frac{1}{2}\hbar^2 \nabla_{\mathbf{R}} \cdot \widehat{\mathbf{m}}_{\mathbf{R}}^{-1} \cdot \nabla_{\mathbf{R}} + E_a(\mathbf{R}) - \sum_b \frac{1}{2}\hbar^2 \mathbf{d}_{ab}(\mathbf{R}) \cdot \widehat{\mathbf{m}}_{\mathbf{R}}^{-1} \cdot \mathbf{d}_{ab}(\mathbf{R}) \end{bmatrix} \chi_a(\mathbf{R},t) + \sum_b \frac{1}{2}\hbar^2 \begin{bmatrix} \mathbf{d}_{ab}(\mathbf{R}) \cdot \widehat{\mathbf{m}}_{\mathbf{R}}^{-1} \cdot \nabla_{\mathbf{R}} + \nabla_{\mathbf{R}} \cdot \widehat{\mathbf{m}}_{\mathbf{R}}^{-1} \cdot \mathbf{d}_{ab}(\mathbf{R}) \end{bmatrix} \chi_b(\mathbf{R},t)$$
Adiabatic part
Non-Adiabatic terms
$$\widehat{\mathbf{m}}_{\mathbf{R}} \text{ Diagonal nuclear mass matrix}$$

 $d_{ab}(\mathbf{R}) = \langle \psi_a(\mathbf{r}, \mathbf{R}) | \nabla_{\mathbf{R}} | \psi_b(\mathbf{r}, \mathbf{R}) \rangle_{\mathbf{r}} = \frac{\langle \psi_a(\mathbf{r}, \mathbf{R}) | \nabla_{\mathbf{R}} \hat{H}_{el}(\mathbf{r}, \mathbf{R}) | \psi_b(\mathbf{r}, \mathbf{R}) \rangle_{\mathbf{r}}}{E_b(\mathbf{R}) - E_a(\mathbf{R})}, \quad \text{Non-adiabatic derivative coupling vectors (NACs)}$

Adiabatic basis: singularity at level crossings! Can be lifted by rotating basis into diabatic representation (not uniquely defined!)

 $\nabla_{R} |\phi(r)\rangle \equiv 0$ diabatic electronic wavefunctions do not depend on **R**

 $\langle \phi_a(r) | \nabla_R^2 | \phi_b(r) \rangle \equiv 0$ Kinetic energy terms for diabatic wavefunctions

Electronic Hamiltonian in the diabatic basis (no longer diagonal!)

 $H_{ab}(\mathbf{R}) \equiv \left\langle \phi_a(\mathbf{r}) \middle| \widehat{H}_{el}(\mathbf{r}, \mathbf{R}) \middle| \phi_b(\mathbf{r}) \right\rangle \neq 0$

 $H_{aa}(\mathbf{R})$ are diabatic potential energy surfaces (PESs)

Example: conical intersection in adiabatic and diabatic bases

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- > Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

Basic use: non-radiative relaxation modeling

Developers: new methodologies, deep understanding

Mixed Quantum-Classical Dynamics (MQC)

To use full scale quantum chemistry for nonadiabatic dynamics (even as a black-box), a compromise is needed! Numerical cost of adiabatic dynamics is about 1,000x of that of single point; Numerical cost of non- adiabatic dynamics is about 1,000,000x of that of single point! Mixed quantum-classical dynamics treat the slow coordinate (nuclear) motion by classical mechanics, but the forces that govern the classical motion incorporate the influence of nonadiabatic transitions.

However, MQC methods suffer from the fundamental inconsistencies between quantum and classical mechanics. A major issue is proper incorporation of feedback between the quantum and classical degrees of freedom. This remains a formidable challenge!

- 1. Self-consistency between the classical and quantum coordinates
- 2. Proper treatment of quantum coherence and decoherence phenomena
- 3. Incorporation of detailed balance (respect temperature, distribution and relaxation down!)
- 4. Lack of vibrational quantum effects such as tunneling, zero-point motion, and quantized energy levels

The main message of the lecture: non-adiabatic dynamics simulation is a severe compromise between accuracy and computational cost: it ALWAYS has 2 distinct and uncontrollable sources of errors

- 1. Electronic calculator (i.e. HF, TD-DFT, CI, EOM-CC, MR-SCF, CAS) error
- 2. Non-adiabatic driver (e.g. MQC Ehrenfest or Surface hopping) error

J. Chem. Phys. 137, 22A301 (2012)

'On the fly' MQC Molecular Dynamics

Forces in adiabatic and non-adiabatic case Adiabatic situation

ion

Hellman-Feynman relation

Electronic States

Non-adiabatic situation

Electronic States

The main questions when approaching large molecular systems:

- I) What is an optimal model chemistry in terms of numerical cost/accuracy? The answer is system-specific!!!!
- II) What are the main 'pitfalls' for accuracy loss while modeling photoexcited dynamics?
 - Are we describing excited state properly? Excitons, charge transfer states, spin states, bond-breaking, etc.
 - Are we using appropriate non-adiabatic excited state dynamics methodology? Branching into products, coherences, etc.
 - What are we missing in our particular implementation? Reaching statistical averages, uncontrolled approximations, numerical issues (e.g. trivial crossings)

What do we need from the electronic structure calculator for a given geometry *R*?

- **1.** Solve electronic Schrödinger equation for energies $E_a(\mathbf{R})$ defining PESs $\widehat{H}_{el}(\mathbf{r}, \mathbf{R})\psi_a(\mathbf{r}, \mathbf{R}) = E_a(\mathbf{R})\psi_a(\mathbf{r}, \mathbf{R})$
- 2. Get gradients of energies (forces) $\nabla_{\mathbf{R}} E_a(\mathbf{R})$ defining motion of nuclei on PESs
- 3. Get derivative non-adiabatic couplings scalars NACT and vectors NACR $d_{ab}(R)$ defining nonadiabatic transitions between PESs

NACT:
$$\vec{R}_t \cdot d_{ab}(R) = \left\langle \psi_a(r, R) \middle| \frac{d}{dt} \middle| \psi_b(r, R) \right\rangle_r$$

NACR:
$$d_{ab}(\mathbf{R}) = \langle \psi_a(\mathbf{r}, \mathbf{R}) | \nabla_{\mathbf{R}} | \psi_b(\mathbf{r}, \mathbf{R}) \rangle_r$$

3. Optional: get Hessians $\nabla_R^2 E_a(\mathbf{R})$ defining curvatures of PESs

Note 1. Vector quantities such as $\nabla_R E_a(R)$, $d_{ab}(R)$, $\nabla_R^2 E_a(R)$ better to calculate using analytical (not numerical approach), remember pre-factors ~3N or ~(3N)², N being number of nuclei. Hint: analytical = use density matrix of state or transition density matrix between states

Note 2. Hessians $\nabla_R^2 E_a(\mathbf{R})$ calculations is very involved and there are only a few electronic structure methods where it is available (e.g. TDDFT), however there are useful for decoherence schemes in advanced methods.

PART I: Methodology and Applications

- > Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- > Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS:
qm_theory
scfconv
exst_method
dav guess

The Electronic Structure Problem

>A molecule composed from nuclei and electrons bound by Coulomb interactions

Separate electronic (fast) from nuclei (slow) motion (adiabatic or Born-Oppenheimer approximation)

Assign finite basis size (lattice) – Gaussian (Gaussian, Turbomole, Q-Chem, etc.) or plain waves (VASP, etc.) or Slater (ADF, etc.)

Solve the Schrodinger equation for molecular electronic Hamiltonian:

$\begin{bmatrix} 1 & Z_A & 1 \end{bmatrix}$	<u>Ex</u>
$\left -\frac{1}{2}\sum \nabla_{i}^{2}-\sum \frac{2A}{2}+\sum \frac{1}{2}\right \psi$	$\psi_e(\mathbf{r}; \mathbf{R}) = E_e \psi_e(\mathbf{r}; \mathbf{R}) \qquad \underline{w}$
$\begin{bmatrix} 2 & -i \\ i & -iA & r_{iA} & i > j & r_{ij} \end{bmatrix}$	el

Exponentially hard with respect to Nelectrons

Method	Hamiltonian	Wavefunction	Cost
Ab initio	Exact	Approximate	Large
(e.g. HF, CAS-CI, CC-EOM)		(All electronic correlations)	(~10 atoms)
Density Functional	Approximate, F(ρ),	Fixed	Significant
(e.g. DFT, TDDFT)	(All electronic correlations)	(Kohn-Sham system, mean field)	(~100 atoms)
Semiempirical	Approximate,	Approximate	Low
(e.g. AM1, MNDO, INDO/S)	(Some electronic correlations)	(Some electronic correlations)	(~1000 atoms)
Tight-binding	Approximate,	Approximate	Low
(e.g. Huckel, Frenkel, SSH)	(Min electronic correlations)	(Usually uncorrelated)	(~10,000 atoms)

Hartree-Fock procedure

For simplicity, assume an even number of electrons (closed shell) and an orthogonal basis set

Looking for a solution of electronic problem, $H_e \Psi = E \Psi$ where the wavefunction is a single Slater determinant $\Psi = |\phi_1 \dots \phi_N\rangle$ built on the (unknown) molecular orbitals $\phi_i(\mathbf{r}) = \sum_{i}^{K} C_{ij} \psi_j(\mathbf{r})$

 Virtual
 $\phi_{K, \epsilon_{K}}$

 molecular
 $\phi_{N+1, \epsilon_{N+1}}$

 orbitals
 $\phi_{N+1, \epsilon_{N+1}}$

Ground state one-electron density matrix

$$\bar{\rho}_{nm} = 2\sum_{a}^{occ} C_{na} C_{ma}^{\star}$$

The Fock operator

 $F(\bar{\rho})_{nm} = t_{nm} + V(\bar{\rho})_{nm}$

The Coulomb operator (V or G ~2J-K)

$$V(\bar{\rho})_{mn} = \sum_{k,l}^{K} \bar{\rho}_{kl} [\langle mk|nl \rangle - \frac{1}{2} \langle mn|kl \rangle]$$

The eigenvalue problem (secular equation)

 $FC = SC\varepsilon$

Occupied molecular orbitals

Ground state energy $E = Tr(\bar{\rho}(F+t))$ The total energy $E + \sum_{B>A}^{M} \frac{Z_A Z_B}{R_{AB}}$

Nonlinear integro-differential equations, needs to be solved iteratively to achieve self-consistency! Time-Dependent Density Functional Theory & Time-Dependent Hartree-Fock formalism

> **TD** equation of motion: $i\frac{\partial \rho_{mn}(t)}{\partial t} = [F(\rho), \rho] - \mathcal{E}(t)[\mu, \rho]$

$$L\xi_{\nu} = \Omega_{\nu}\xi_{\nu}$$

Electronic normal modes or transition densities

$$(\xi_{\nu})_{ij} = \langle \Psi_{\nu} | c_i^+ c_j | \Psi_g \rangle$$

Krylov space algorithms (e.g. Davidson, Lanczos)

TDHF: Dirac, Pines, Bartlett, Schmitt-Rink, Jorgensen, McKoy, Fukotome

TDDFT: Runge, Gross, Casida, Perdew, Becke, Yang, Burke, Furche

A, X - CIS (particle-hole) part

Scaling of computational effort:

- Time $\sim N^3$
- Memory $\sim N^2$

Cost/per excited state is smaller than SCF ground state effort

Computing analytic gradients and non-adiabatic couplings:

Analytic calculation of non-adiabatic couplings among excited state (Tommasini/Chernyak/Mukamel/Furche)

Need transition density matrices between excited states

 $\rho_{\alpha\beta} = [[\xi^{\dagger}_{\alpha}, \rho_{00}], \xi_{\beta}] + Z_{\alpha\beta}$

5-15% $Z_{\alpha\beta} = \sum \frac{V_{-\alpha\beta\gamma}}{-\Omega_{\alpha} + \Omega_{\beta} - \Omega_{\gamma}} \xi_{\gamma}$

$$\mathbf{d}_{\alpha\beta} = \frac{\mathrm{Tr}(F^{(R)}\rho_{\alpha\beta})}{\Omega_{\alpha} - \Omega_{\beta}},$$

M. Tommasini, V. Chernyak, S. Mukamel, Int. J. Quant.Chem., 85, 225 (2001); V. Chernyak, S. Mukamel, J. Chem. Phys., 112, 3572 (2000)

S. Tretiak, V. Chernyak, S. Mukamel, Int. J. Quant. Chem., 70, 711 (1998), S. Tretiak, V. Chernyak, J. Chem. Phys., 119, 8809(2003).

What RPA/CIS framework can do...

- I) Pros:
 - > Numerically efficient (states, gradients, couplings)
 - Can describe excitons
 - Can describe crossings of excited states
 - Transparent physics of semiempirics
- II) Cons:
 - Beware of semiempirics, semi-quantitative accuracy
 - Cannot describe excited/ground state crossings
 - Cannot describe double excitations and generally highly correlated states
 - > **Problems with energetics of spin states**
 - Problems with open shell and bond braking

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- > Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

□ KEYWORDS:

natoms
bo_dynamics
exc_state_init
n_exc_states_propagate
moldyn_deriv
therm_type
therm_temperature

Mean field Ehrenfest dynamics

Ansatz for electronic-nuclei wavefunctions

$$\Psi(\boldsymbol{r},\boldsymbol{R},t) = \chi_0(\boldsymbol{R},t) \sum_a c_a(t) \psi_a(\boldsymbol{r},\boldsymbol{R}),$$

 $\chi_0(\mathbf{R}, t)$ is a normalized localized phase-less wavepacket (implicit construct in the calculations)

TDSE becomes Ehrenfest equation to propagate in the adiabatic basis

$$\hbar \frac{\partial c_a(t)}{\partial t} = E_a(\mathbf{R}_t)c_a(t) - i\hbar \sum_b \mathbf{d}_{ab}(\mathbf{R}_t) \cdot \dot{\mathbf{R}}_t c_b(t)$$
NACT: $\langle \psi_a(\mathbf{r}, \mathbf{R}) | \frac{d}{dt} | \psi_b(\mathbf{r}, \mathbf{R}) \rangle_r$
Ehrenfest Force

Nuclei dynamics:
$$\hat{m}_R \ddot{R}_t = F_t = -\sum_a |c_a(t)|^2 \nabla_R E_a(R_t) - \sum_{ab} c_a^*(t) c_b(t) d_{ab}(R_t) [E_b(R_t) - E_a(R_t)]$$

Adiabatic average Non-adiabatic part

- Problem: neglects both differences in zero-point energy (ZPE) for different states and tunneling
- Problem: mean field, nuclei "feel" the mean field potential across the distribution of electronic states
- Problem: No detailed balance (spontaneous heating of the system on longer timescales)

Surface hopping as an alternative to Ehrenfest

Trajectory surface hopping approaches are the MAIN current tools to model excited state nonadiabatic dynamics. Here we consider *ad hoc* Tully's Fewest Switching Surface Hopping (FSSH)

Main idea: Monte-Carlo like stochastic dynamics

- Run an ensemble of **independent** trajectories every one of them proceeds in an adiabatic fashion (*a* is a current state): $\widehat{m}_R \ddot{R}_t = F_t = -\nabla_R E_a(R_t)$
- Propagate occupation probabilities for elections according to mean field TDSE equation (Ehrenfest). This is an auxiliary variable! $i\hbar \frac{\partial c_a(t)}{\partial t} = E_a(\mathbf{R}_t)c_a(t) i\hbar \sum_b \mathbf{d}_{ab}(\mathbf{R}_t) \cdot \dot{\mathbf{R}}_t c_b(t)$

Evaluate the probability for a "hop":

$$P_{a \to b}(t) = Max \left[0, -\frac{\delta t \frac{2}{\hbar} \operatorname{Re} \left[c_a^*(t) c_b(t) \left[\boldsymbol{d}_{ab}(\boldsymbol{R}_t) \cdot \dot{\boldsymbol{R}}_t \right] \right]}{c_a c_a^*} \right]$$

The "hop" is evaluated at every numerical step (δt):

1) The probability to hop to all included states is determined. If the probability to hop to a state is negative, it is set to zero.

2) A random number is compared to these probabilities to determine if a hop occurs and to which state ('flip a coin').

3) If a hop occurs the nuclear velocity \dot{R}_t is adjusted along the direction of the NACR $d_{ab}(R_t)$ such that the total energy is conserved. For hops which increase the potential energy, if there is not enough kinetic energy in this direction then the hop is "frustrated" and does not occur.

How does all this work? 3 Tully's problems

coupling with reflection

and Ehrenfest to describe coherences and interferences

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS: decoher_type dotrivial quant_step_reduction _factor

The main TSH problem: decoherence corrections

Lack of electronic decoherence -> internal inconsistency of FSSH. There are well over 100 schemes how to fix it, ranging from empirical to completely new SH algorithms (Rossky, Prezhdo, Bittner, Subotnik, Truhlar, Granucci, etc)!

IDC-A (instantaneous decoherence at each attempted hop) is a practical fix

Here we are exciting the second excited state S_2 in stilbene and watching build up of population on S_1 state (i.e. $S_2 \rightarrow S_1$ non-radiative relaxation)

$$c'_{\beta}(t) = c_{\beta}(t)e^{-\Delta t/\tau_{\beta\alpha}(t)}$$

T. Nelson, S. Fernandez-Alberti, A. E. Roitberg, S. Tretiak, J. Chem. Phys., 138 224111 (2013)

Non-obvious problem: trivial crossings

This problem was identified only recently when we learn how to treat large systems. This calls for following the diabatic passage preserving the identity of states (Levine, Prezhdo, etc.)

Summary: MQC surface hopping approaches (aka Tully FSSH)

The Good:

- Trajectory-based approach using state energies, gradients, NACT and NACR
- Respects detailed balance and Boltzmann distribution
- Accounts for branching into different products
- Extremely robust, never fails computationally

The Bad

- Lack of decoherence and interferences (independent trajectory, no phase information)
- Simulations must include empirical corrections such as decoherence or trivials
- Works only in adiabatic representation (fails in diabatic basis)
- Neglects both differences in zero-point energy (ZPE) for different states and tunneling

The Ugly

- Completely ad hoc. Impossible to derive.
- The number of variations competes with DFT

Practical implementations of surface hopping dynamics are typically done across MANY approaches ranging from tabulated PESs to semiempirical Hamiltonians to DFT and TDDFT, to MR-CI to EOM-CC to CASSCF. Codes: ANT, COBRAMM, JADE, NEWTON-X, SHARC, Turbomole, NWChem, Q-Chem, PIXAID, Libra, NEXMD, CPMD, OCTOPUS, CHEMSHELL.

Conformational sampling for dynamics

How many trajectories are enough?

T. Nelson, S. Fernandez-Alberti, V. Chernyak, A.E. Roitberg, S. Tretiak, J. Chem. Phys., 136 054108 (2012)

On-the-fly limiting of essential excited states

Potential computational saving factor x2-100, depending on the excited state density

T. Nelson, A. Naumov, S. Fernandez-Alberti, S. Tretiak, Chem. Phys., 84-90 (2016)

For molecular systems one needs to go beyond Classical Path Approximation

Use true excited state PES

4 fs and 63 fs bi-exponential fit

Excited state vibrational relaxation brings states closer facilitating hops;

Excited state trajectories lead to/away from the level crossing regions **Use ground state PES**

380 fs exponential fit
Wavepacket Evolution

energy

FSSH example: Energy transfer in a dendrimer

Incident

photon

Some findings:

• Complex dynamic of energy transfer relying on multiple states;

Emitted

photon

 S_1

Artificial light-harvesting system

- Huge conformational space of the molecule (structure 'softness')
- Coherent electron-vibrational dynamics, localization/delocalization and wave-like motion of the wavefunction

J. Am. Chem. Soc., 137, 11637 (2015) Nature Comm. 9, 2316 (2018)

 S_2

The notion of electron-vibrational coherence

REVIEW

doi:10.1038/nature21425

Using coherence to enhance function in chemical and biophysical systems

Gregory D. Scholes¹, Graham R. Fleming², Lin X. Chen^{3,4}, Alán Aspuru-Guzik⁵, Andreas Buchleitner⁶, David F. Coker⁷, Gregory S. Engel⁸, Rienk van Grondelle⁹, Akihito Ishizaki¹⁰, David M. Jonas¹¹, Jeff S. Lundeen¹², James K. McCusker¹³, Shaul Mukamel¹⁴, Jennifer P. Ogilvie¹⁵, Alexandra Olaya-Castro¹⁶, Mark A. Ratner¹⁷, Frank C. Spano¹⁸, K. Birgitta Whaley^{19,20} & Xiaovang Zhu²¹

SH vs Ehr vs AIMC-MCE

V.M. Freixas, A.J. White, T. Nelson, D.V. Makhov, D. Shalashilin, S. Fernandez-Alberti, S. Tretiak, J. Phys. Chem. Lett. Perspective, 12, 2970 (2021)

SH vs Ehr vs AIMC-MCE

I. Population evolution

Decay rates generally follow $k_{SH} > k_{MCE-AIC} > k_{Ehr}$

SH rates strongly depend on the type of decoherence corrections

Decay rates are MUCH MORE sensitive to electronic structure methods used (due to gaps)

II. Coherences

As manifested by 'wiggles' in population or gap or other observables:

Ehr - the strongest coherence (vibronic wavepacket cannot decohere in mean field),

SH – the weakest coherence (independent trajectories, no vibronic wavepacket!)

AIMC – in between SH and Ehr

V.M. Freixas, A.J. White, T. Nelson, D.V. Makhov, D. Shalashilin, S. Fernandez-Alberti, S. Tretiak, J. Phys. Chem. Lett. Perspective, 12, 2970 (2021)

Questions?

Our plan for the lecture

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

■ **KEYWORDS:** NAMD_type='aimc AIMC_max_clone nclones0

The need to go beyond MQC NAMD

- Improved coherent multi-pulse timeresolved spectroscopy resolved ultrafast electronic and vibrational coherences – new ways to control photodynamics outcome;
- Even better resolutions are offered by XFEL facilities (both X-ray and optical setups);
- Synthesis/fabrication are getting more precise & tunable (e.g. artificial intelligence);
- Computer powers increase toward Exascale computing, GPU and heterogeneous architectures.
- Electronic structure calculators are getting more accurate.

The Need:

- Departure from ad hoc and empirical methodologies;
- Need controllable approximations that can be systematically improved;
- Desirable to retain trajectory-based approaches using state energies, gradients, NACT and NACR, etc.;
- Need methods that are easily parallelizable and scalable.

Chem. Rev. 2018, 118, 3305-3336

Note: Most of world computer power in materials modeling is spent on MD applications vs. electronic structure simulations.

Trajectory independent approaches (aka Ehrenfest and surface hopping) are embarrassingly parallel and desirable (perhaps with post-processing)

Dependent trajectory approaches are hard to parallelize.

Tutorial example "when phase matters": Semiclassical Gaussian wavepacket dynamics (GWD)

Propagate

time

Idea: use Gaussians to represent nuclei wavefunctions. Back in 1975, Eric Heller suggested that the nuclear wavefunction has the form of a 'thawed' Gaussian (or superposition of Gaussians) function.

 $g(\boldsymbol{R}_t, \boldsymbol{P}_t, \boldsymbol{R}, t) = \exp\left[\frac{i}{\hbar}[\gamma_t + \boldsymbol{P}_t \cdot (\boldsymbol{R} - \boldsymbol{R}_t) + (\boldsymbol{R} - \boldsymbol{R}_t) \cdot \hat{\boldsymbol{\alpha}} \cdot (\boldsymbol{R} - \boldsymbol{R}_t)]\right]$

This allows the introduction of classical trajectories into TDSE: equation of motion for Gaussian center position and momenta (\mathbf{R}_t , \mathbf{P}_t - classical Newtonian ones!), complex width $\boldsymbol{\alpha}$ and phase γ_t (importantly, curvature of $E(\mathbf{R})$ should not change significantly on the length of Gaussian, otherwise it will broaden). Note that for parabolas, Gaussians turn into frozen, $\hat{\boldsymbol{\alpha}} = const$.

$$\dot{\boldsymbol{R}}_{t} = \widehat{\boldsymbol{m}}_{R}^{-1} \cdot \boldsymbol{P}_{t} \qquad \qquad \dot{\widehat{\boldsymbol{\alpha}}} = -2\widehat{\boldsymbol{\alpha}} \cdot \widehat{\boldsymbol{m}}_{R}^{-1} \cdot \widehat{\boldsymbol{\alpha}} - \frac{1}{2}\nabla_{R}(\nabla_{R}\boldsymbol{E}(\boldsymbol{R}_{t}))$$
$$\dot{\boldsymbol{P}}_{t} = \boldsymbol{F}_{t} = -\nabla_{R}\boldsymbol{E}(\boldsymbol{R}_{t}) \qquad \qquad \dot{\gamma}_{t} = i\hbar Tr\left[\frac{\widehat{\boldsymbol{\alpha}}}{M}\right] + \frac{1}{2}\boldsymbol{P}_{t} \cdot \widehat{\boldsymbol{m}}_{R}^{-1} \cdot \boldsymbol{P}_{t} - \boldsymbol{E}(\boldsymbol{R}_{t})$$

This idea led to multiple follow ups (Herman-Kluk (HK) propagator, Miller-Meyer Stock-Thoss (MMST) Hamiltonian, etc.)

Multiconfigurational Ehrenfest, MCE (Shalashilin)

MCE is trajectory-guided approach: A swarm of Gaussian functions follows mean-field (Ehrenfest) trajectories. This allows to run **on the fly dynamics**

Wavefunction

$$\Psi(\boldsymbol{r},\boldsymbol{R},t) = \sum_{n} d^{(n)}(t) \,\Psi^{(n)}(\boldsymbol{r},\boldsymbol{R},t)$$

Ehrenfest configuration

Ehrenfest equation

1

$$i\hbar \frac{\partial c_a(t)}{\partial t} = E_a(\mathbf{R}_t)c_a(t) - i\hbar \sum_b \mathbf{d}_{ab}(\mathbf{R}_t) \cdot \dot{\mathbf{R}}_t c_b(t)$$

 $\Psi^{(n)}(\boldsymbol{r},\boldsymbol{R},t) \equiv \chi^{(n)}(\boldsymbol{R},t) \sum_{a} c_{a}^{(n)}(t) \psi_{a}^{(n)}(\boldsymbol{r},\boldsymbol{R})$

From time-dependent Schrödinger equation, expression for coefficients $d^{(n)}(t)$

$$i\hbar\frac{\partial}{\partial t}d^{(n)} = \sum_{m} \left\langle \Psi^{(n)}(\boldsymbol{r},\boldsymbol{R},t) \middle| \Psi^{(m)}(\boldsymbol{r},\boldsymbol{R},t) \right\rangle^{-1} \sum_{l} \left\langle \Psi^{(m)}(\boldsymbol{r},\boldsymbol{R},t) \middle| \widehat{H}(\boldsymbol{R},\boldsymbol{r}) - i\hbar\frac{\partial}{\partial t} \middle| \Psi^{(l)}(\boldsymbol{r},\boldsymbol{R},t) \right\rangle d^{(l)}(t)$$

Finally vibrational wavefunctions follow the Ehrenfest trajectories (can be spread over multiple PESs)

$$\chi^{(n)}(\boldsymbol{R}_t, \boldsymbol{P}_t, \boldsymbol{R}, t) = \exp\left[\frac{i}{\hbar}[\gamma_t + \boldsymbol{P}_t \cdot (\boldsymbol{R} - \boldsymbol{R}_t) + (\boldsymbol{R} - \boldsymbol{R}_t) \cdot \widehat{\boldsymbol{\alpha}} \cdot (\boldsymbol{R} - \boldsymbol{R}_t)]\right]$$

This is Gaussian wavepacket with a fixed, purely imaginary width, $\hat{\alpha}(t) = i\hat{\alpha}_I(0)$, and with a time-dependent phase factor: $\dot{\gamma}_t = \mathbf{P}_t \cdot M^{-1} \cdot \mathbf{P}_t/2$. The wavepacket (or a TBF is referred to as a Coherent State). Note that $d^{(n)}(t)$ represent couplings between trajectory basis functions (TBFs).

Bottom line: In MCE, one need to propagate an ensemble of Ehrenfest trajectories (this is primary variable). Parameters of nuclei wavepackets (e.g. phases) and wavefunctions are found by cheap post-processing of trajectories. Embarrassingly parallel and can reuse of Ehrenfest coding

Faraday Disc. 153, 105 (2011)

There are no free lunch: MCE complications

Numerical problem 1: Trivial crossing preclude propagation in a purely adiabatic basis $\psi_a(\mathbf{r}, \mathbf{R})$. One need to introduce *Time-dependent diabatic basis:* Trajectories are still calculated in adiabatic basis, but overlaps are calculated in local diabatic basis $\phi_a(\mathbf{r})$

Phys. Chem. Chem. Phys. 18, 10028 (2016)

Numerical problem 2: The finite size of the basis set (i.e. TBFs) is the most serious limitation. Reaching the convergence is not simple.

Approximation: Ehrenfest is a mean field. Even though MCE has detailed balance, mean-field propagation requires a huge basis to converge and prevent sampling of the phase space.

This can be fixed with CLONING

The difference between the shapes of the potential energy surfaces for different electronic states should lead to branching of the wave packet. This can be rigorously controlled with numerical criteria.

Bottom line: MCE-AIMC is one of the second practical semiclassical NAMD implementations featuring controlled approximation and calculations of phases of nuclei wavepackets. Can treat tunneling. *Expensive:* requires convergence of TBFs. *Codes:* NEXMD and some codes in Martinez and Levine groups

J. Chem. Phys., 141, 054110 (2014)

Phys. Chem. Chem. Phys. 20, 17762, (2018)

Our plan for the lecture

PART I: Methodology and Applications

- > Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS:
 solvent_model
 potential_type
 ceps
 EF

Anatomy of solution

- Electronic polarizability
 - Induced dipole
 - Usually a smaller effect
 - Instantaneous
- Dipole orientation
 - Permanent dipole
 - Usually a larger effect
 - Dielectric relaxation

Martin, R. L., Hay, P. J., Pratt, L. R. J. Phys. Chem. A 1998 102, 3565

Solvation models for excited state calculations

J. A. Bjorgaard, V. Kuzmenko, K. Velizhanin, S. Tretiak, J. Chem. Phys. 142, 044103. (2015) J. A. Bjorgaard, K. Velizhanin, S. Tretiak, J. Chem. Phys. 143, 054305 (2015)

C. A. Guido, G. Scalmani, B. Mennucci, D. Jacquemin, J. Chem. Phys. 146, 204106 (2017)

Non-equilibrium solvation in NEXMD

Evolution of the solvent dipole

J. A. Bjorgaard, K. Velizhanin, S. Tretiak, J. Chem. Phys. 144, 154104 (2016)

F. Ding, D. B. Lingerfelt, B. Mennucci, X. Li, J. Chem. Phys. 142, 034120 (2015)

At each time step, update from the previous reaction field $\Delta t/r_{\rm e} = t$

$$R_M(t+\Delta t)=e^{-\Delta t/\tau_L}R(t).$$

Assume a constant potential across each time step

$$R_I(t + \Delta t) = \frac{\epsilon_0 - \epsilon_\infty}{\epsilon_0 \epsilon_\infty} (1 - e^{-\frac{\Delta t}{\tau_L}}) V(t)$$

LR solvent non-adiabatic dynamics

A. E. Sifain, J. A. Bjorgaard, T.R. Nelson, B.T. Nebgen, A.J. White, B. J. Gifford, O.V. Prezhdo, S. Fernandez-Alberti, A.E. Roitberg, S. Tretiak J. Chem. Theory Comput., 14, 3955 (2018)

QM/MM framework

QM/MM interactions MM effect on QM: van-der-Waals spheres and polarization/charges; QM effect on MM: polarization through the excited state density matrix ρ^{ex}_{ij}

Note that ρ^{gr}_{ij} is used in the ground state QM/MM dynamics (e.g., AMBER Tools/AMBER). So conceptually excited state QM/MM is straightforward and attractive.

Solvent, protein, etc. treated with MM. Interacts with QM

Currently being developed in A. Roitberg group

Our plan for the lecture

PART I: Methodology and Applications

- > Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- > Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS:
density_predict

Problems with ab initio BOMD

$$\mathcal{L}^{\mathrm{BO}}(\mathbf{R}, \dot{\mathbf{R}}) = \frac{1}{2} \sum_{I} M_{I} \dot{R}_{I}^{2} - U(\mathbf{R}, \rho^{\mathrm{SCF}}) \qquad M_{I} \ddot{\mathbf{R}}_{I} = -\frac{\partial U(\mathbf{R}, \rho^{\mathrm{SCF}})}{\partial R_{I}}$$

Extended Lagrangian excited states

The Euler–Lagrange equations

$$\mathcal{L}^{\text{ES}}(R, \dot{R}) = \frac{1}{2} \sum_{k} M_{k} \dot{R}_{k}^{2} - U[R; D] - \Omega[R; D, \xi] \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{L}^{\text{XES}}}{\partial \dot{R}} \right) = \frac{\partial \mathcal{L}^{\text{XES}}}{\partial R}$$

$$\mathcal{L}^{\text{XES}}(R, \dot{R}, P, \dot{P}, \zeta, \dot{\zeta}) \qquad \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{L}^{\text{XES}}}{\partial \dot{P}} \right) = \frac{\partial \mathcal{L}^{\text{XES}}}{\partial P}$$

$$= \mathcal{L}^{\text{ES}}(R, \dot{R}) + \frac{\mu_{\text{gs}}}{2} Tr[\dot{P}^{2}] - \frac{\mu_{\text{gs}} \omega_{\text{gs}}^{2}}{2} Tr[(D - P)^{2}] \qquad \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{L}^{\text{XES}}}{\partial \dot{P}} \right) = \frac{\partial \mathcal{L}^{\text{XES}}}{\partial P}$$

$$+ \frac{\mu_{\text{es}}}{2} Tr[\dot{\zeta}^{2}] - \frac{\mu_{\text{es}} \omega_{\text{es}}^{2}}{2} Tr[(\xi - \zeta)^{2}] \qquad \qquad \frac{d}{dt} \left(\frac{\partial \mathcal{L}^{\text{XES}}}{\partial \dot{\xi}} \right) = \frac{\partial \mathcal{L}^{\text{XES}}}{\partial \xi}$$

Ground state density matrix P is an extended dynamical variable to the Born-Oppenheimer Lagrangian that follows the ground state through a harmonic oscillator centered around the evolving ground state D. ζ is the corresponding variable to the excited state transition density ξ μ_{gs} , μ_{es} , ω_{gs} and ω_{es} are the fictitious electronic mass and frequency parameters of the extended harmonic oscillators for the ground state (gs) and the excited state (es).

J. A. Bjorgaard, D. Sheppard, S. Tretiak, A. Nicklasson, J. Chem. Theory Comput., 14, 799 (2018)

Extended Lagrangian excited states

Vanishing mass -> decoupled Euler-Lagrange equations $\mu_{gs} \rightarrow 0$ and $\mu_{es} \rightarrow 0$,

$$\begin{array}{l} \ddot{P} = \omega_1^{\ 2}(D - P) \\ \ddot{\zeta} = \omega_2^{\ 2}(\xi - \zeta) \end{array} \qquad M_k \ddot{R}_k = -\frac{\partial U[R; D]}{\partial R_k} - \frac{\partial \Omega[R; D, \xi]}{\partial R_k} \end{array}$$

A modified Verlet integration scheme with small amount of dissipation $P(t + \delta t) = 2P(t) - P(t - \delta t) + \delta t^{2} \ddot{P}(t) \qquad \zeta(t + \delta t) = 2\zeta(t) - \zeta(t - \delta t) + \delta t^{2} \ddot{\zeta}(t) + \alpha \sum_{k=0}^{K_{\text{max}}} c_{k} P(t - k \delta t) + \alpha \sum_{k=0}^{K_{\text{max}}} c_{k} \zeta(t - k \delta t)$

 $D(t + \delta t) = \mathcal{SCF}[\mathbf{R}(t + \delta t), P(t + \delta t)] \quad \xi(t + \delta t) = \mathcal{RPA}[\mathbf{R}(t + \delta t), D(t + \delta t), \zeta(t + \delta t)]$

P(t+ δ t) and ζ (t+dt) provide accurate approximations to D(t+ δ t) and ξ (t+ δ t) up to δ t²

J. A. Bjorgaard, D. Sheppard, S. Tretiak, A. Nicklasson, J. Chem. Theory Comput., 14, 799 (2018)

XL-ESMD adiabatic dynamics tests

J. A. Bjorgaard, D. Sheppard, S. Tretiak, A. Nicklasson, J. Chem. Theory Comput., 14, 799 (2018)

Our plan for the lecture

PART I: Methodology and Applications

- > Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS: Uhf = 'True' shop2gs hop2gs_crit hop2gs_method

Open shell implementation is needed

Beware for severe limitations for open shells

- RPA/CIS cannot properly describe excited to ground state crossing;
- Unrestricted spin approaches typically underestimate dissociation barriers;

Y. Zhang, L. Li, S. Tretiak, and T. Nelson, J. Chem. Theory Comput. 14, 2053 (2020)

Functionalized Tetrazine-Cl

M.T. Greenfield, S.D. McGrane, C.A, Bolme, J.A. Bjorgaard, T.R. Nelson, S. Tretiak, R.J. Scharff, J. Phys. Chem. C, 119, 4846 (2015)

Initial state

Our plan for the lecture

PART I: Methodology and Applications

- Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- > Open shell, bond breaking
- > Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

□ **KEYWORDS:** usc = .true.

lmcoup Ephoton

Coupling NEXMD with light: Jaynes-Cummings (JC) & Tavis-Cummings (TC) models

$$\hat{H}_{JC} = \omega_c a^{\dagger} a + \Omega(\mathbf{R}) \sigma^{\dagger} \sigma - g(\mathbf{R}) (a^{\dagger} \sigma + a \sigma^{\dagger})$$

Cavity photon

Molecular excitation

Coupling $\mu(\mathbf{R}) \cdot \mathbf{E}$

Strong coupling = the coupling between light and matter is strong compared to the damping, but is small compared to both excitation and photon energies

TC model = *M* identical two-level emitters that interact strongly with a lossless cavity mode.

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963). The total number of excitations is constant

 $\hat{N}\,=\,a^{\dagger}a+\sum_{i}^{M}\sigma_{i}^{\dagger}\sigma_{i}$

Rabi splitting $\Omega_r(\mathbf{R}) = 2\sqrt{\Delta^2(\mathbf{R})/4 + g^2(\mathbf{R})N_cM}$

Mapping light-matter interactions into quantum chemistry

The rotating wave approximation (RWA) neglects the fast oscillating terms $\hat{H}_{tot} = \sum_{i=1}^{N} \Omega_i(\mathbf{R}) c_i^{\dagger} c_i + \omega_c a^{\dagger} a + \sum_{i=1}^{N} g_i(\mathbf{R}) (c_i^{\dagger} a + c_i a^{\dagger})$

 $H = \begin{bmatrix} \omega_c & g_1 & \cdots & g_N \\ g_1 & \Omega_1(\mathbf{R}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ g_N & 0 & \cdots & \Omega_N(\mathbf{R}) \end{bmatrix} \quad \Psi_K = \sum_{i=0}^N \beta_i^K |\psi_i\rangle \qquad |\psi_0\rangle = |S_0, 1\rangle \quad |\psi_i\rangle = |S_i, 0\rangle$ $\mathbf{N+1 \text{ polaritonic states}}$

Excited states NAMD simulations require analytic calculations of excited state gradients and derivative couplings (derived for RPA-like approaches, aka TDDFT, CIS)

$$\begin{split} F_{a}^{K} &= -\langle \Psi_{K} | \nabla_{a} \hat{H} | \Psi_{K} \rangle & \frac{\partial \mu_{i}}{\partial \mathbf{R}_{a}} = \sum_{\mu\nu} \left[\frac{\partial \langle \mu | \mathbf{R} | \nu \rangle}{\partial \mathbf{R}_{a}} \xi_{i,\nu\mu} + \langle \mu | \mathbf{R} | \nu \rangle \frac{\partial \xi_{i,\nu\mu}}{\partial \mathbf{R}_{a}} \right] \\ \mathbf{d}_{KL} &= \langle \Psi_{K} | \nabla_{\mathbf{R}} \Psi_{L} \rangle = \frac{\langle \Psi_{K}(t) | \hat{H}^{\mathbf{R}} | \Psi_{L}(t) \rangle}{E_{L}(t) - E_{K}(t)} & \text{Now we can do} \\ \mathbf{polaritonic NAMD!!} \end{split}$$

Y. Zhang, T. Nelson, S. Tretiak J. Chem. Phys. 151, 154109 (2019)

Example: Controlling photochemistry in a cavity

Cis-Trans isomerization of stilbene in a cavity

Calculated absorption spectrum Cis-isomer, appearance of P₁₁ and P₁ polationic branches.

Modification of excited state potential energy surfaces for Cis-isomer

Y. Zhang, T. Nelson, S. Tretiak J. Chem. Phys. 151, 154109 (2019)

Cis-Trans isomerization quantum yield, the NAMD results

Y. Zhang, T. Nelson, S. Tretiak J. Chem. Phys. 151, 154109 (2019)

Our plan for the lecture

PART I: Methodology and Applications

- > Introduction: what are we taking about?
- Born-Oppenheimer Approximation
- Need for atomistic methods, mixed quantumclassical approach
- Electronic structure theory in NEXMD
- Ehrenfest dynamics
- Surface Hopping methodology
- Trivial crossings and decoherence effects

PART II: Some advanced NEXMD capabilities

- Multi-configurational Ehrenfest with Ab Initio Multiple Cloning (MCE-AIMC)
- Environmental effects
- Extended Largangian excited state MD
- Open shell, bond breaking
- Polaritonics, molecules in the cavity
- Practical aspects: spectra, rates, wavefunction analysis

Feel free to ask question on the fly...

KEYWORDS:
 getexcited.py

Practical example of MCE-AIMC: energy transfer

Energy transfer pathways: Spatial arrangement from short (2 rings) to middle (3 rings) to long (4 rings) segments and electronically cross $S_3 \rightarrow S_2 \rightarrow S_1$ states. Goal is to understand effect of molecular topology and relarively soft structure (conformations).

Bottom line: MCE-AIMC simulations suggest that energy moves in space most efficiently when all 3 processes are co-directional. There are notable electron-vibrational coherences appearing as beating across the entire trajectory ensemble (these are absent if surface hopping). J. Chem. Phys., 150, 124301 (2019)
Analysis of spatial energy transfer pathways

Analysis: Electronic energy transfer is directional in space. Analysis of electronic wavefunctions and their fluxes in space is necessary. Transition density distributions and fluxes are convenient

Transition density (TD) matrix of *I*-th state

 $\left(\rho_{I}^{(n)}\right)_{i,j} = \langle \phi_{I}^{(n)} \big| \hat{c}_{i}^{\dagger} \hat{c}_{j} \big| \phi_{g}^{(n)} \rangle$

J. Chem. Phys., 150, 124301 (2019)

Analyses of non-adiabatic coupling vector and relation to the state-specific excited state vibrations

• NEXMD can calculate Instantaneous and equilibrium normal modes for specific excited states;

• One has advanced options to FREEZE selective coordinates and conduct NAMD with reduced number of vibrational degrees of freedom (FrozeNM algorithm).

H. Negrin-Yuvero, V. M. Freixas, B. Rodriguez-Hernandez, G. Rojas-Lorenzo, S. Tretiak, A. Bastida and S. Fernandez-Alberti J. Chem. Theory Comput. 16, 7289 (2020)

Next step: pyTorch Semi-Empirical Package (PySeQM) https://github.com/lanl/PYSEQM

Features:

- Specifically tailored for machine learning (ML) applications
- PyTorch-based: efficient automatic differentiation/backpropagation
- AM1/PM3 with future models (PM6, OM2, OM3,...) to be added
- Ultra fast ground state Molecular Dynamics on GPU
- SP2 for rapid density matrix determination
- Extended Lagrangian method for rapid MD propagation

Batched Processing for ML Applications

- cuSolver for Batched Diagonalization
- Batched Matrix Construction
- Batched SCF Convergence

The code is released for public in 2020, collaborations are welcome.

G. Zhou, B. Nebgen, N. Lubbers, A.M.N. Niklasson, S. Tretiak, J. Chem. Theory Comput. 16, 4951 (2020)

Path forward: pyTorch Semi-Empirical Package (PySeQM) https://github.com/lanl/PYSEQM

Future plans

- ML for ground state Hamiltonian (use of Hellmann-Feynman to avoid back propagation through SCF iterations);
- Excited states (RPA/CIS)
- ML Hamiltonian for excited state PES toward photodynamics

In conclusion:

Modeling of non-adiabatic dynamics (NAMD) is a lively fast developing field, becoming an important counterpart of experiment;

- □ There are plenty of methods available, from few level models to MQC techniques to high accuracy AIMS, MCE-AIMC and MC-TDH;
- There are many free/commercial codes available. Wrappers (aka Pyxaid, Newton-X and Sharc) are universal and slow; build in NAMD driver is faster (aka Molpro, Turbomole, NWChem and NEXMD);
- Always beware about 2 sources of error: electronic structure and NAMD driver errors;
- Science starts when we start asking the right questions: understand physics, pick up the right 'tool' to get answers, so that we can understand, control and improve...
- Communication between synthesis, experiments and theory is very important – we are touching different pieces of 'truth';
- Think about why are you doing this? Is there a road from science to technology?

Acknowledgments: NEXMD developers

Code and applications

Tammie Nelson (LANL) Yu Zhang (LANL) Wilson Song (LANL) Walter Malone (LANL) Andrew Sifain (LANL)

Team: Adrian Roitberg (U. Florida) Team: Sebastian Fernandez-Alberti (Argentina) Victor Freixas Team: Thomas Frauenheim (Bremen, Germany) Team: Shaul Mukamel (UCI)

Group homepage: http://cnls.lanl.gov/~serg tretiak@lanl.gov

Center for Integrated Nanotechnologies (CINT) Center for Nonlinear Studies (CNLS) LDRD program at LANL, DOE BES, EFRC **Theory:** Solvent, XL-ESMD Josiah Bjorgaard (LANL) Anders Nicklasson (LANL)

AIMC-MCE

Alex White (LANL) Dmitrii Shalashilin (UK, Leeds) Dmitry Makhov (UK, Leeds)

Machine Learning

Ben Nebgen (LANL) Kipton Barros (LANL) Nick Lubbers (LANL) Guoqing Zhou (USC)

Experiment: many!

Thank you!

Questions?

