Table 1: Vertical excitation energies and dominant contributions of the  $S_0$  and  $S_1$  states of fulvene optimized with SA2-CASSCF(6,6)/6-31G and MRCI(CAS(6,6))/6-31G. For MRCI, the Pople correction is also given (MRCI/+Pople).

| State                                | $\Delta E (eV)$                      | Configuration                                | %    |
|--------------------------------------|--------------------------------------|----------------------------------------------|------|
|                                      | $SA2-CASSCF(6,6) - S_0$ optimization |                                              |      |
| $\mathbf{S}_0$                       | 0.000                                | $(1b2)^2(2b2)^2(3b2)^0(4b2)^0$               | 75.7 |
|                                      |                                      | $(1a2)^2(2a2)^0$                             |      |
| $\mathbf{S}_1$                       | 4.080                                | $(1b2)^2(2b2)^2(3b2)^1(4b2)^0$               | 72.0 |
|                                      |                                      | $(1a2)^{1}(2a2)^{0}$                         |      |
|                                      |                                      | $(1b2)^2(2b2)^1(3b2)^2(4b2)^0$               | 14.8 |
|                                      |                                      | $(1a2)^{1}(2a2)^{0}$                         |      |
|                                      |                                      |                                              |      |
| SA2-CASSCF(6,6) – $S_1$ optimization |                                      |                                              |      |
| $S_0$                                | 1.403                                | $(1b2)^2(2b2)^2(3b2)^0(4b2)^0$               | 65.4 |
|                                      |                                      | $(1a2)^2(2a2)^0$                             |      |
|                                      |                                      | $(1b2)^2(2b2)^1(3b2)^1(4b2)^0$               | 13.8 |
|                                      |                                      | $(1a2)^2(2a2)^0$                             |      |
| $\mathbf{S}_1$                       | 2.630                                | $(1b2)^2(2b2)^2(3b2)^1(4b2)^0$               | 70.8 |
|                                      |                                      | $(1a2)^1(2a2)^0$                             |      |
|                                      |                                      | $(1b2)^2(2b2)^1(3b2)^2(4b2)^0$               | 16.1 |
|                                      |                                      | $(1a2)^{1}(2a2)^{0}$                         |      |
|                                      |                                      |                                              |      |
|                                      | SA2-CA                               | ASSCF(6,6) – MXS optimization                |      |
| $\mathbf{S}_0$                       | 2.932                                | $(19a)^2(20a)^2(21a)^1(22a)^1(23a)^0(24a)^0$ | 71.7 |
|                                      |                                      | $(19a)^2(20a)^1(21a)^1(22a)^2(23a)^0(24a)^0$ | 15.5 |
| $\mathbf{S}_1$                       | 2.932                                | $(19a)^2(20a)^2(21a)^2(22a)^0(23a)^0(24a)^0$ | 58.6 |
|                                      |                                      | $(19a)^2(20a)^1(21a)^2(22a)^1(23a)^0(24a)^0$ | 16.9 |
|                                      |                                      |                                              |      |
|                                      |                                      | $MRCI - S_0$ optimization                    |      |
| $S_0$                                | 0.000/0.000                          | $(1b2)^{2}(2b2)^{2}(3b2)^{0}(4b2)^{0}$       | 69.0 |
|                                      |                                      | $(1a2)^2(2a2)^0$                             |      |
| $\mathbf{S}_1$                       | 3.907/3.779                          | $(1b2)^2(2b2)^2(3b2)^1(4b2)^0$               | 70.1 |
|                                      |                                      | $(1a2)^{1}(2a2)^{0}$                         |      |
|                                      |                                      |                                              |      |
| C                                    | 1 0 (0/1 104                         | MIKCI – $S_1$ optimization                   | (1.0 |
| $\mathbf{S}_0$                       | 1.268/1.194                          | $(1b2)^2(2b2)^2(3b2)^3(4b2)^3$               | 61.8 |
|                                      |                                      | $(1a2)^2(2a2)^3$                             | 10 5 |
|                                      |                                      | $(1b2)^{2}(2b2)^{1}(3b2)^{1}(4b2)^{0}$       | 10.5 |
| G                                    |                                      | $(1a2)^2(2a2)^6$                             |      |
| $\mathbf{S}_1$                       | 2.638/2.600                          | $(1b2)^{2}(2b2)^{2}(3b2)^{4}(4b2)^{6}$       | 67.3 |
|                                      |                                      | $(1a2)^{1}(2a2)^{0}$                         | 10.0 |
|                                      |                                      | $(1b2)^{2}(2b2)^{1}(3b2)^{2}(4b2)^{0}$       | 10.8 |
|                                      |                                      | $(1a2)^{(2a2)^{\circ}}$                      |      |
|                                      |                                      |                                              |      |

|       | MRCI – MXS optimization |  |
|-------|-------------------------|--|
| $S_0$ |                         |  |
| $S_1$ |                         |  |

Table 2: Total energies in Hartree of fulvene

|                                    | $\mathbf{S}_0$ | $S_1$      |
|------------------------------------|----------------|------------|
| SA2-CASSCF(6,6)-S <sub>0</sub> opt | -230.64459     | -230.49466 |
| SA2-CASSCF(6,6)-S <sub>1</sub> opt | -230.59303     | -230.54794 |
| SA2-CASSCF(6,6)-MXS-planar         | -230.53683     | -230.53683 |
| MRCI-S <sub>0</sub> opt            | -231.07035     | -230.92677 |
| MRCI+Q-S <sub>0</sub> opt          | -231.14743     | -231.00857 |
| MRCI-S <sub>1</sub> opt            | -231.02375     | -230.97340 |
| MRCI+Q-S <sub>1</sub> opt          | -231.10356     | -231.05189 |
| MRCI-MXS-planar                    |                |            |

Table 3: Oscillator strength of the  $S_0$  to  $S_1$  transition of fulvene optimized with SA2-CASSCF(6,6)/6-31G\* and MRCI(CAS(6,6))/6-31G.

| Method                               | f    |
|--------------------------------------|------|
| SA2-CASSCF(6,6) – $S_0$ optimization | 0.00 |
| SA2-CASSCF(6,6) – $S_1$ optimization | 0.00 |
| MRCI – S <sub>0</sub> optimization   | 0.01 |
| $MRCI - S_1$ optimization            | 0.00 |

Table 4: C-C bond distances of the optimized  $S_0$ ,  $S_1$ , and crossing seam structures using the SA2-CASSCF(6,6)/6-31G and MRCI(CAS(6,6))/6-31G methods.





Figure 1: Optimized active orbitals for the  $S_0$  optimized with SA2-CASSCF(6,6)/6-31G.

## Directories on CCR:

|                    | SA2-CASSCF(6,6)/6-31G                |
|--------------------|--------------------------------------|
| S <sub>0</sub> opt | /user/ub2037/fulvene/S0-CAS          |
| $S_1$ opt          | /user/ub2037/fulvene/S1-CAS          |
| MXS                | /user/ub2037/fulvene/MXS-CAS/mxs_opt |
|                    |                                      |
|                    |                                      |
| S <sub>0</sub> opt | /user/ub2037/fulvene/SO-CI           |
| S <sub>1</sub> opt | /user/ub2037/fulvene/S1-CI           |
| MXS                |                                      |