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Why do we need Multireference Methods?

• Density functional theory (DFT)

• Møller-Plesset perturbation theory (MP2)

• Coupled cluster theory (CCSD(T))

• Semiempirical methods

• Why more??? 



Simple Example: Bond Dissociation of H2
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orbitals are well 

separated

Occupied and virtual 
orbitals are quasi-

degenerate



Generalization to Many Electrons
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Automatic assignment of 
orbitals possible

Automatic assignment of orbitals 
NOT generally possible
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“Excitations” into 
virtual orbitals 

“Dynamic electron 
correlation”
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Single Reference Configuration Interaction (SRCI)

Excitation (substitution) of occupied orbitals by virtual ones
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 Excitation (or substitution) of occupied orbital i by virtual 

orbital a

Closed shell determinant

Singly excited configuration i
a

Single-, double-, triple- … m-tuple excitations
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Method of configuration interaction (CI):
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Variation principle (Ritz) is used to determine 
the coefficients and the energy

Note: Orbitals are usually taken from SCF calculation 



Multireference Configuration Interaction (MRCI)
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Orbital scheme

Reference wave function 0: 

m-tuple excitations from 

into the virtual orbitals creates a set of 
configurations {I}

Application of the Ritz variation principle leads to the MR-CI 
method.
Standard approach: inclusion of single (S) and double (D) 
excitations
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Excitation scheme:
• refdocc active
• active  virtual
• refdocc  virtual
• active  active



Multiconfiguration SCF (MCSCF)
• Approach used to compute molecular orbitals (MOs) for MRCI

• Independent calculations

• Wavefunction as in MRCI:
MCSCF
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• In many cases the MCSCF expansion will be identical to the reference space 
of MRCI

• Important: the configurations are constructed from MOs, the MOs are 
expanded in a basis set (like SCF MOs)
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Simultaneous optimization of the wavefunction expansion coefficients             and MO 
coefficients  
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Molecular 
geometry, 
basis set

Compute 
AO integrals

AO 
integrals

MCSCF
Active 
space

MO 
coeff.

AOMO 
transformation

MO 
integrals

MRCI Energy, CI 
coefficents

Reference 
space



Types of MRCI: uncontracted or contracted
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• Free variation, more flexible, more expensive
• Contraction, computationally faster

Truncation of MRCI leads to size extensivity errors: correlation energy does not scale 
correctly with size of the system
MR averaged quadratic coupled cluster MR-AQCC) method: size extensivity corrections



Ritz Variational Principle
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H E     Schrödinger equation

CI expansion
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  Multiply from the left with 

l and integrate 
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Strategy for Multibillion CI calculations 

Solving for individual eigenstates: “Davidson subspace method”1)

Projection of the Hamiltonian matrix H into a set of an increasing number of 
subspace expansion vectors vi leading to smaller matrices      and solve the smaller 
eigenvalue problems until convergence is achieved.
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st s tH  v Hv

The main computational step is the matrix-vector product wj = Hvj. 

Direct CI (Roos): “on-the-fly” calculation of the contributions to the matrix-vector product 

1) E. R. Davidson, J. Comp. Physics 17, 87, 1975



st st
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H H a h b g    

Indices i,j,k,l run over the number of orbitals.

12 and 1/  are the one- and two-electron integralsij i j ijkl i k j lh h g r     

and  and  are coupling coefficients.st st

ij ijkla b

The matrix-vector product can be written as

st st

s ij ij t ij ijkl t

t ij t ijkl

w a h v b g v  

Classification and Organization of Different Terms



Calculation of coupling coefficient using 
the Graphical Unitary Group Approach 
(GUGA)1,2)

Graphical representation of a Distinct Row 

Table (DRT)

Reference configurations in red

Inactive (reference doubly occupied)

Active (variable occupation in the reference)

External (virtual) orbitals: only singles and 

doubles
1)Paldus, J., J. Chem. Phys. 61, 5321-5330, 1974
Shavitt, I., in: The Unitary Group for the Evaluation of Electronic 
Energy
2)Matrix Elements, Lecture Notes in Chemistry, vol. 22 (ed. J. 
Hinze), 51–99. Berlin: Springer, 1981



Step Vector

di = 0  orbital i is unoccupied (uo)

di = 1,2  orbital i is singly occupied (so)

di = 3  orbital i is doubly occupied (do)

Example: 

Orbital           1   2   3   4   5   6

Step vector    1   0   3   1   0   2

so uo do so uo so



• The internal (active + closed shell) part of the graph is 
complicated, but relatively small in comparison to the 
virtual (external) space. 

• The graph for the external is space is very simple due 
to the fact that we allow only double excitations. 
Moreover, its structure is independent of the internal 
part. Respective loops (coupling elements) can be 
computed once and for all. 

• The interface between internal and external space is 
given by the vertices Z (0-excitations), Y (single-
excitations), X (double excitations, triplet coupling) and 
W (double excitations, singlet coupling)



• The loops are split into an internal part and into an 
external one. The internal part is computed 
explicitly and either stored on a file (formula file) or 
recomputed every Davidson iteration. The external 
part is added “on-the-fly” when the total coupling 
elements are computed.

• The two-electron integrals are sorted according to 
the number of internal indices: all (four)-internal, 
three-internal, two-internal, one internal and all-
external.



Analytic MRCI energy Gradients

Basic formalism: 
R. Shepard, H. Lischka, P. G. Szalay, T. Kovar and M. Ernzerhof, J. Chem. Phys. 96, 
2085, 1992
Applicable to general MR wavefunctions

Extension to excited states
H. Lischka, M. Dallos and R. Shepard
Mol. Phys. 100, 1647, 2002
Based on state-averaged MCSCF calculation



Conical Intersection of Energy Surfaces

MXS2

MXS3

MXS1

Example: Ethylene dimerization

Conical intersection
Branching space

Intersection space
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Search for minima on the crossing seam (MXS)

Conical Intersections, Electronic Structure, Dynamics & Spectroscopy
W. Domcke, D. R. Yarkony and H. Köppel, World Scientific 2004

D. R. Yarkony, J. Phys. Chem. A 101, 4263, 1997
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