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Why do we need Multireference Methods?

* Density functional theory (DFT)

* Mgller-Plesset perturbation theory (MP2)
* Coupled cluster theory (CCSD(T))

* Semiempirical methods

e Why more???



Simple Example: Bond Dissociation of H,
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Generalization to Many Electrons
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Single Reference Configuration Interaction (SRCI)

Excitation (substitution) of occupied orbitals by virtual ones

D,D,..0.D,..® ®,| Closed shell determinant
o, o Excitation (or substitution) of occupied orbital ®@; by virtual
orbital @,

DD,..0,D,..0 D[ Singly excited configuration P2

Single-, double-, triple- ... m-tuple excitations
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Note: Orbitals are usually taken from SCF calculation



Multireference Configuration Interaction (MRCI)

Orbital scheme
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Multiconfiguration SCF (MCSCF)

* Approach used to compute molecular orbitals (MOs) for MRCI
* Independent calculations
* Wavefunction as in MRCI:

N MCSCF

_ MCSCF | \gy MCSCF
Yycser = Z Cy ‘qjk >
k=1

* In many cases the MCSCF expansion will be identical to the reference space
of MRCI

* Important: the configurations are constructed from MOs, the MOs are
expanded in a basis set (like SCF MOs)
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Types of MRCI: uncontracted or contracted
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* Free variation, more flexible, more expensive
e Contraction, computationally faster
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Truncation of MRCI leads to size extensivity errors: correlation energy does not scale
correctly with size of the system
MR averaged quadratic coupled cluster MR-AQCC) method: size extensivity corrections



Ritz Variational Principle
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Strategy for Multibillion Cl calculations

Solving for individual eigenstates: “Davidson subspace method”?)

Projection of the Hamiltonian matrix H into a set of an increasing number of
subspace expansion vectors v, leading to smaller matrices Hand solve the smaller
eigenvalue problems until convergence is achieved.
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H, =V.Hv,

The main computational step is the matrix-vector product w; = Hv;
Direct Cl (Roos): “on-the-fly” calculation of the contributions to the matrix-vector product

1) E. R. Davidson, J. Comp. Physics 17, 87, 1975



Classification and Organization of Different Terms

Hst = <Ws | H |Wt> Zaljt hlj + Zbljkl gljk|

ijkl

Indices i,j,k,l run over the number of orbitals.
h; =(¢,|h|¢;) and g, = (A, |1/ 1, |44 ) are the one- and two-electron integrals

and & and by, are coupling coefficients.

The matrix-vector product can be written as
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Calculation of coupling coefficient using
the Graphical Unitary Group Approach
(GUGA)2)
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Graphical representation of a Distinct Row
Table (DRT)

Reference configurations in red

Inactive (reference doubly occupied)

Active (variable occupation in the reference)
External (virtual) orbitals: only singles and

doubles
Dpaldus, J., J. Chem. Phys. 61, 5321-5330, 1974

Shavitt, I., in: The Unitary Group for the Evaluation of Electronic
Energy

2)Matrix Elements, Lecture Notes in Chemistry, vol. 22 (ed. J.
Hinze), 51-99. Berlin: Springer, 1981
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Step Vector

d. = 0 = orbital i is unoccupied (uo)
d. = 1,2 = orbital 1 is singly occupied (so)

d. = 3 = orbital I is doubly occupied (do)

Example:
Orbital 1 23456
Stepvector 1 0 3 1 0 2

SO uo do so uo so




* The internal (active + closed shell) part of the graph is
complicated, but relatively small in comparison to the
virtual (external) space.

* The graph for the external is space Is very simple due
to the fact that we allow only double excitations.
Moreover, its structure is independent of the internal
part. Respective loops (coupling elements) can be
computed once and for all.

* The interface between internal and external space Is
given by the vertices Z (0-excitations), Y (single-
excitations), X (double excitations, triplet coupling) and
W (double excitations, singlet coupling)




* The loops are split into an internal part and into an
external one. The internal part is computed
explicitly and either stored on a file (formula file) or
recomputed every Davidson iteration. The external
part is added “on-the-fly” when the total coupling
elements are computed.

* The two-electron integrals are sorted according to
the number of internal indices: all (four)-internal,
three-internal, two-internal, one internal and all-
external.




Analytic MRCI energy Gradients

Basic formalism:
R. Shepard, H. Lischka, P. G. Szalay, T. Kovar and M. Ernzerhof, J. Chem. Phys. 96,

2085, 1992
Applicable to general MR wavefunctions

Extension to excited states

H. Lischka, M. Dallos and R. Shepard

Mol. Phys. 100, 1647, 2002

Based on state-averaged MCSCF calculation



Conical Intersection of Energy Surfaces
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Example: Ethylene dimerization Search for minima on the crossing seam (MXS)

Conical Intersections, Electronic Structure, Dynamics & Spectroscopy p R. Yarkony, J. Phys. Chem. A 101, 4263, 1997
W. Domcke, D. R. Yarkony and H. Képpel, World Scientific 2004
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