

Excited States and Nonadiabatic Dynamics CyberTraining School/Workshop 2022

Alexey Akimov

University at Buffalo, SUNY

July 5, 2022

Basic Concepts and Terminology of Nonadiabatic Dynamics

Wavefunction and selection of representation

 $|\Psi\rangle$ Abstract wavefunction $\{|r\rangle\}$ Position states (Hilbert space)

 $\Psi(\mathbf{r}) = \langle \mathbf{r} | \Psi \rangle$ Wavefunction in a position representation – representation in the basis of position states $\Psi(\mathbf{k}) = \langle \mathbf{k} | \Psi \rangle$ Likewise, the momentum space representation of a wavefunction Indeed $1 = \int d\mathbf{r}' | \mathbf{r}' \rangle \langle \mathbf{r}' |$ Complete basis

 $|\Psi\rangle = \int d\mathbf{r}' |\mathbf{r}'\rangle \langle \mathbf{r}' |\Psi\rangle = \int d\mathbf{r}' |\mathbf{r}'\rangle \Psi(\mathbf{r}')$

 $\Psi(r')$ is essentially an expansion coefficient in the basis of coordinate states $\{|r\rangle\}$

Different Hilbert spaces:

S: $\Psi(\mathbf{r}) = \langle \mathbf{r} | \Psi \rangle$ only electrons $\Psi(\mathbf{R}) = \langle \mathbf{R} | \Psi \rangle$ only nuclei $\Psi(\mathbf{r}, \mathbf{R}) = \langle \mathbf{r}, \mathbf{R} | \Psi \rangle$ both electrons and nuclei $\Psi_i(\mathbf{r}) = \langle \mathbf{r} | \Psi_i \rangle = \langle \mathbf{r}, i | \Psi \rangle$ electronic coordinates, i-th basis state

Shorthand notation. Adiabatic and diabatic representations

 $|\boldsymbol{\psi}\rangle = (|\psi_1\rangle, |\psi_2\rangle, \dots, |\psi_N\rangle)$ $A = \langle \boldsymbol{\psi} | \hat{A} | \boldsymbol{\psi} \rangle$ $A_{ii} = \langle \psi_i | \hat{A} | \psi_i \rangle$ $|\Psi(t)\rangle = |\psi_{adi}(t)\rangle C_{adi}(t) = |\psi_{dia}(t)\rangle C_{dia}(t)$ Adiabatic (Hamiltonian is diagonal) Diabatic (NACs are exactly zero) $|\boldsymbol{\psi}_{adi}\rangle = |\boldsymbol{\psi}_{dia}\rangle U$ $H_{dia}U = SUH_{adi}$ $H_{dia} = \langle \boldsymbol{\psi}_{dia} | \widehat{H}_{el} | \boldsymbol{\psi}_{dia} \rangle$ $H_{adi} = \langle \boldsymbol{\psi}_{adi} | \hat{H}_{el} | \boldsymbol{\psi}_{adi} \rangle$

 $H_{adi} = U^+ H_{dia} U = \tilde{H}_{dia}$

 $P_{adi} = \langle \boldsymbol{\psi}_{adi} | \hat{\rho} | \boldsymbol{\psi}_{adi} \rangle = \langle \boldsymbol{\psi}_{adi} | \boldsymbol{\psi}_{adi} \rangle C_{adi} C_{adi}^{+} \langle \boldsymbol{\psi}_{adi} | \boldsymbol{\psi}_{adi} \rangle = I C_{adi} C_{adi}^{+} I = C_{adi} C_{adi}^{+}$

Basis

 $|\boldsymbol{\psi}\rangle = (|\psi_1\rangle, |\psi_2\rangle, \dots, |\psi_N\rangle)$

The diabatic basis is not necessarily orthonormal

What it all means

Wavefunction is the same in all representations

Transformation

One can then show:

$$C_{dia} = UC_{adi} \leftrightarrow C_{adi} = U^{-1}C_{dia} \leftrightarrow C_{adi} = U^+SC_{dia}$$

 $\langle \boldsymbol{\psi}_{adi} | \boldsymbol{\psi}_{adi} \rangle = U^+ \langle \boldsymbol{\psi}_{dia} | \boldsymbol{\psi}_{dia} \rangle U = U^+ SU = I$

Coefficients in this basis (dynamical variables, not in the nHamiltonian)

 $C = (c_1, c_2, ..., c_N)^T$

 $\langle \boldsymbol{\psi}_{dia} | \boldsymbol{\psi}_{dia} \rangle = S$

 $|\Psi\rangle = |\psi_{adi}\rangle C_{adi} = |\psi_{dia}\rangle C_{dia}$

nHamiltonian

- level
- id
- nHamiltonian* parent
- vector<nHamiltonian*> children
- nnucl, nadi, ndia
- CMATRIX* ham dia, nac dia, hvib dia
- CMATRIX* ham_adi, nac_adi, hvib_adi
- CMATRIX* ovlp dia, time overlap dia
- CMATRIX* ovlp_adi, time_overlap_adi
- CMATRIX* basis_transform
- vector<CMATRIX*> dc1 adi, dc1 dia
- vector<CMATRIX*> d1ham adi, d1ham dia
- ampl dia2adi
- ampl_adi2dia

$$|\psi_{adi}\rangle C_{adi} = \sum_{i} \psi_{i} C_{adi,i}$$

 $|\psi_{adi}\rangle = |\psi_{dia}\rangle U$

How to compute NACs?

 $U^{+}\nabla H_{dia}U - \left(\tilde{D}_{dia}^{+}H_{adi} + H_{adi}\tilde{D}_{dia}\right) = \nabla H_{adi} - \left(D_{adi}^{+}H_{adi} + H_{adi}D_{adi}\right)$ $\widetilde{\nabla H_{dia}} - \left(\tilde{D}_{dia}^{+}\tilde{H}_{dia} + \tilde{H}_{dia}\tilde{D}_{dia}\right) = \nabla H_{adi} - \left(D_{adi}^{+}H_{adi} + H_{adi}D_{adi}\right)$

Then use special structure of the matrix

Nonadiabatic couplings

Properties of the NACs

$$\overline{D}_{dia}^{+} + \overline{D}_{dia} = \nabla S$$

$$\overline{D}_{adi} + \overline{D}_{adi}^{+} = \nabla S_{adi} = 0 \rightarrow (D_{adi}^{\alpha})^{+} = -D_{adi}$$

$$D_{adi}^{\alpha} = \widetilde{D}_{dia}^{\alpha} + U^{+}S\nabla_{\alpha}U$$

This is a wellknown property!

$$D_{rep,ij}^{\alpha} \equiv \langle \psi_{rep,i} | \nabla_{\alpha} \psi_{rep,j} \rangle \text{ is a scalar}$$

$$D_{rep,ij} \equiv \langle \psi_{rep,i} | \nabla \psi_{rep,j} \rangle \text{ understood as a column-vector}$$

$$\overline{D}_{rep} \equiv \langle \psi_{rep} | \nabla \psi_{rep} \rangle \text{ understood as a vector of matrices } D_{rep}^{\alpha} = \langle \psi_{rep} | \nabla_{\alpha} \psi_{rep} \rangle$$

Important observations

the equation becomes an identity when U = I

Quantum-classical Hamiltonian

$$H_{qc} = T + E_{tot} = \sum_{n} \frac{p_n^2}{2m_n} + E_{tot}$$

For TSH (adiabatic) energies, just use the coefficients of special form C = (0, 0, 1, ..., 0)

nHamiltonian

- Ehrenfest_energy_adi
- Ehrenfest_energy_dia

Making a Quantum-classical transition. Way 1

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \hat{H}|\Psi\rangle$$

$$\hat{H}(\hat{R}, \hat{P}) = \hat{T}(\hat{P}) + \hat{H}_{el}(\hat{R})$$

$$\hat{T}(\hat{P}) = \sum_{i} \frac{1}{2} |i\rangle \hat{P}^{T} M^{-1} \hat{P} \langle i| = \sum_{i} -\frac{\hbar^{2}}{2} |i\rangle \nabla^{T} M^{-1} \nabla \langle i|$$

$$i\hbar \sum_{j} S_{rep,ij} \frac{dC_{rep,j}}{dt} = \sum_{j} \left[H_{rep,ij} - i\hbar d_{rep,ij} \right] C_{rep,j}$$

Projecting onto electronic basis:

$$i\hbar S \frac{dC_{rep}}{dt} = (H_{rep} - i\hbar d_{rep})C_{rep}$$

Ehrenfest dynamics

int rep_tdse

- 0: diabatic representation

- 1: adiabatic representation [default]

By projection

 $i\hbar \frac{\partial |\Psi\rangle}{\partial t} = H|\Psi\rangle$

$$i\hbar \frac{dC_{adi}}{dt} = H_{adi}C_{adi} - i\hbar \sum_{n} D_{adi,n} \frac{p_n}{m_n} C_{adi}$$

$$i\hbar S \frac{dC_{dia}}{dt} = H_{dia}C_{dia} - i\hbar \sum_{n} D_{dia,n} \frac{p_n}{m_n} C_{dia}$$

By requiring the energy conservation

 $\dot{q}_{n} = \frac{p_{n}}{m_{n}}$ $\dot{p}_{n} = f_{adi,n}^{MF} \equiv \frac{1}{C_{adi}^{+}C_{adi}} C_{adi}^{+} F_{adi,n}^{MF} C_{adi}$ $\dot{p}_{n} = f_{adi,n}^{MF} \equiv \frac{1}{C_{adi}^{+}C_{adi}} C_{adi}^{+} F_{adi,n}^{MF} C_{adi}$ $\dot{p}_{n} = f_{dia,n}^{MF} \equiv \frac{1}{C_{dia}^{+}SC_{dia}} C_{dia}^{+} F_{dia,n}^{MF} C_{dia}$ $CMATRIX Ehrenfest_forces_adi \\ CMATRIX Ehrenfest_forces_adi_unit$ $F_{adi,n}^{MF} = -\langle \psi_{adi} | \nabla_{n} H | \psi_{adi} \rangle$ $= \left[-\nabla_{n} H_{adi} + D_{adi,n}^{+} H_{adi} D_{adi,n} \right]$ $F_{adi,n}^{MF} = -\langle \psi_{dia} | \nabla_{n} H | \psi_{dia} \rangle$ $= \left[-\nabla_{n} H_{dia} + D_{dia,n}^{+} H_{adi} D_{adi,n} \right]$ $F_{adi,n}^{MF} = -\langle \psi_{dia} | \nabla_{n} H | \psi_{dia} \rangle$ $= \left[-\nabla_{n} H_{dia} + D_{dia,n}^{+} H_{dia} S^{-1} D_{dia,n} \right]$

vector<CMATRIX> Ehrenfest_forces_tens_adi

Meyer-Miller-Thoss-Stock Hamiltonian

Making a Quantum-classical transition. Way 2. Contd.

= -Hq

More generally:

$$H^{MMTS}(\mathbf{R}, \mathbf{P}, \mathbf{q}, \mathbf{p}) = \frac{1}{2} \mathbf{P}^T M^{-1} \mathbf{P} + \sum_{i} \frac{1}{2} (q_i^2 + p_i^2 - \gamma) H_{ii}(\mathbf{R}) + \frac{1}{2} \sum_{i,j;i \neq j} H_{ij}(\mathbf{R}) (q_i q_j + p_i p_j)$$

For N-level system:

∂p

 $\frac{\partial H^{MMTS}(\boldsymbol{R},\boldsymbol{P},\boldsymbol{q},\boldsymbol{p})}{\boldsymbol{R}}$

∂**q**

$$\gamma = \frac{2}{N} \left(\sqrt{N+1} - 1 \right)$$

The equations of motion are "classical"

P

q =

 $\dot{p} = -$

$$\dot{\mathbf{R}} = \frac{\partial H^{MMTS}(\mathbf{R}, \mathbf{P}, \mathbf{q}, \mathbf{p})}{\partial \mathbf{P}} = M^{-1}\mathbf{P}$$

$$\dot{\mathbf{P}} = -\frac{\partial H^{MMTS}(\mathbf{R}, \mathbf{P}, \mathbf{q}, \mathbf{p})}{\partial \mathbf{R}} = -\sum_{i} \frac{1}{2} (q_i^2 + p_i^2 - \gamma) \nabla H_{ii}(\mathbf{R}) - \frac{1}{2} \sum_{i,j;i\neq j} \nabla H_{ij}(\mathbf{R}) (q_i q_j + p_i p_j)$$

$$\dot{\mathbf{q}} = \frac{\partial H^{MMTS}(\mathbf{R}, \mathbf{P}, \mathbf{q}, \mathbf{p})}{\partial \mathbf{r}} = H\mathbf{p}$$
These equations are equivalent to TD-SE, just consider

$$C_{rep,i} = \frac{1}{\sqrt{2}}(q_i + ip_i)$$

Overview of Dynamical Functions in Libra

What is Nonadiabatic Dynamics?

TSH in the nutshell

Libra as a workhorse of our developments

Implemented in Libra: https://quantum-dynamics-hub.github.io/libra/index.html https://github.com/Quantum-Dynamics-Hub/libra-code

Akimov JCC, 2016, 37, 1626

Examples& Tutorials: https://github.com/compchem-cybertraining

Some of the implemented methods:

Methods	Paper
Surface hopping schemes	Tully, J. C. <i>J. Chem. Phys.</i> 1990 , <i>93</i> , 1061 (FSSH); Wang, L., et al. <i>JCTC</i> 2014 , 10, 3598 (GFSH); Akimov, A. V. et al. <i>J. Phys. Soc. Jpn.</i> 2015 , 84, 094002 (MSSH)
Decoherence schemes	Granucci, G.; Persico, M. <i>J. Chem. Phys.</i> 2007 , <i>126</i> , 134114 (SDM); Nelson, T. et al. <i>J. Chem. Phys.</i> 2013 , <i>138</i> , 224111. (ID-A, ID-S); Jaeger, H. M. et al. <i>J. Chem. Phys.</i> 2012 , <i>137</i> , 22A545 (DISH)
Dephasing times calculations	Smith, B.; Akimov, A. V. <i>J. Chem.Phys.</i> 2019 , 151, 124107 Akimov, A. V.; Prezhdo, O. V. <i>J. Phys. Chem. Lett.</i> 2013 , <i>4</i> , 3857 Sifain, A. E.; Wang, L.; Tretiak, S.; Prezhdo, O. V. Granucci, G.; Persico, M. <i>J. Chem. Phys.</i> 2007 , <i>126</i> , 134114.
Neglect of back-reaction (NBRA)	Prezhdo, O. V.; Duncan, W. R.; Prezhdo, V. V. Prog. Surf. Sci. 2009, 84, 30
Boltzmann-corrected Ehrenfest	Bastida, A. et al. Chem. Phys. Lett. 2006 , 417, 53 Smith, B.; Akimov, A. V. J. Chem.Phys. 2019 , 151, 124107
Phase corrections	Akimov, A. V J. Phys. Chem. Lett. 2018, 9, 6096
State tracking	Fernandez-Alberti, S.; et al. <i>J. Chem. Phys.</i> 2012 , <i>137</i> , 014512 (mincost); Temen, S.; AVA. JPCL 2021 , 12, 10587-10597 (stochastic)
Interfaces with ES codes	DFTB+ (Smith, B.; AVA <i>JPCL</i> . 2020 , 11, 1456), QE (Pradhan et al. <i>JPCM</i> , 2018 , 30, 484002), CP2K (Smith, B. A. et al. JCTC, 2021, 17, 678), Gaussian, GAMESS (Sato et al. <i>PCCP</i> , 2018 , 20, 25275)
Exact dynamics	Kosloff, D. and Kosloff, R. J. Chem. Phys. 1983 , <i>52</i> , 35-53 (SOFT); Colbert, D. T. and Miller, W. H. 1992 , <i>96</i> , 1982-1991 (Colert-Miller DVR)
HEOM	Temen et al. Int. J. Quant. Chem., 2020, 120, e26373

int rep_ham;

- 0: diabatic representation [default]
- 1: adiabatic representation

The primary way the Hamiltonian is computed in Python function

int force_method;

- 0: don't compute forces at all e.g. we do not really need them
- 1: state-specific as in the TSH or adiabatic (including adiabatic excited states) [default]
- 2: Ehrenfest

int enforce_state_following;

Wheather we want to enforce nuclear dynamics to be on a given state, regardlenss of the TSH transitions Options:

- 0: no [default]

- 1: yes on-the-fly NBRA

Note: only matters is `force_method == 1`

int enforced_state_index;

If we enforce the nuclear dynamics to be on a given state, what is the index of that state [any integer >- 0, default = 0] The default value of 0 enforces the nuclear dynamics to be on the ground state. This is a convenient way of doing NBRA calculations with model systems without the need for pre-computing the trajectories

$S_{t,ij} = \left\langle \psi_i(t) \middle| \psi_j(t + \Delta t) \right\rangle$

int time_overlap_method;

How do get the time-overlaps in the dynamics. Options:

- 1: based on external calculations (the Hamiltonian shall have the time_overlap_adi member updated) - use for NBRA

int nac_update_method;

How to update NACs and vibronic Hamiltonian before electronic TD-SE propagation.

Options:

- 0: don't update them (e.g. for simplest NAC)
- 1: update according to changed momentum and existing derivative couplings [default]
- 2: update according to time-overlaps (only time-derivative NACs)

int nac_algo

How to compute time-derivative NACs

Options:

- -1: don't, e.g. we use NACs from somewhere else [default]
- 0: use HST formula (if nac_update_method==2)
- 1: use NPI of Meek and Levine (if nac_update_method==2)

int do_phase_correction;

Options:

- 0: no phase correction

- 1: according to our phase correction algorithm [default]

Phase correction

Akimov, A. V. J. Phys. Chem. Lett. 2018 9, 6096-6102

$$d_{ij} = \frac{\langle \psi_i(t) | \psi_j(t+dt) \rangle - \langle \psi_i(t+dt) | \psi_j(t) \rangle}{2dt}$$

Hammes-Schiffer, S.; Tully, J. C. J. Chem. Phys. **1994**, 101, 4657–4667

But states are defined only up to a complex phase!

Phase correction:
$$f_i = \frac{\langle \psi_i(t) | \psi_i(t') \rangle}{\sqrt{|\langle \psi_i(t) | \psi_i(t') \rangle|}}$$
 $|\tilde{\psi}_i(t') \rangle = f_i^* | \psi_i(t') \rangle$ phase_correction_tolIndeed:

Min value of timeoverlap we care to phase-correct

$$\begin{split} |\psi_i(t)\rangle &= e^{i\phi(t)}|\chi_i(t)\rangle \\ |\psi_i(t')\rangle &= e^{i\phi(t')}|\chi_i(t')\rangle \end{split}$$

Then:

$$\begin{aligned} &|\tilde{\psi}_{i}(t')\rangle = f_{i}^{*}|\psi_{i}(t')\rangle = \\ &e^{-i[\phi(t')-\phi(t)]}e^{i\phi(t')}|\chi_{i}(t')\rangle = e^{i\phi(t)}|\chi_{i}(t')\rangle \end{aligned}$$

Phase-correct other properties:

 $d_{ij}^{\alpha} = \langle \psi_i | \nabla_{\alpha} | \psi_j \rangle \to f_i \langle \psi_i | \nabla_{\alpha} | \psi_j \rangle f_j^*$

Implementation in Libra:

 $S^{\sigma\sigma\prime}(n) = \left\langle \tilde{\psi}^{\sigma}(t_n) \middle| \tilde{\psi}^{\sigma\prime}(t_{n+1}) \right\rangle = F_n^{\sigma} S(n) \left(F_{n+1}^{\sigma\prime} \right)^* = F_n^{\sigma} S(n) \left(F_n^{\sigma\prime} \right)^* \left(f_{n+1}^{\sigma\prime} \right)^*$

Phase correction

Akimov, A. V. J. Phys. Chem. Lett. 2018 9, 6096-6102

State Tracking in NA-MD

Arises because of finite Δt or due to inconsistency of energy and NAC (due to approximations)

State Tracking in NA-MD

State reassignment is easy: $[0, 1] \rightarrow [1, 0]$

Inspirator: Prof. Ivan Infante

Story Temen

- Fernandez-Alberti, S.; Roitberg, A. E.; Nelson, T.; Tretiak, S.
 J. Chem. Phys. 2012, *137*, 014512.
- Wang, L.; Prezhdo, O. V. J. Phys. Chem. Lett. 2014, 5, 713
- Ryabinkin, I. G.; Nagesh, J.; Izmaylov, A. F. J. Phys. Chem. Lett. 2015, 6, 4200
- Qiu, J.; Bai, X.; Wang, L. J. Phys. Chem. Lett. 2018, 9, 4319

Physics of the state swapping: adiabatic transition

State reassignment is not clear: $[0, 1] \rightarrow [??, ??]$

Stochastic State Tracking

measures the two states' similarity

probability of the two "adiabatic" state transfer (state switch)

But:

- we also need to account for the all states' transition probabilities
- there are n! permutations = probabilities to compute

So:

stochastic "many-state" hops

 $\left|a_{j,i}\right|^{2} = \left|S_{ij}(t,t+\Delta t)\right|^{2}$

 $P_{i \to j} = \frac{\left|S_{ij}(t, t + \Delta t)\right|^2}{\sum_{\nu} |S_{ik}(t, t + \Delta t)|^2}$

• reject unfeasible states

Simple 2-state model

int state_tracking_algo;

State tracking algorithm:

- 0: no state tracking
- 1: method of Kosuke Sato (may fail by getting trapped into an infinite loop)
- 2: Munkres-Kuhn (Hungarian) algorithm [default]
- 3: experimental stochastic algorithm, the original version with elimination (known problems)
- 32: experimental stochastic algorithms with all permutations (too expensive)
- 33: the improved stochastic algorithm with good scaling and performance, on par with the mincost

$$C_{ij} = -\left|S_{t,ij}(t,t+\Delta t)\right|^2 \exp(-\alpha^2 \Delta E_{ij}^2)$$

double MK_alpha;

Munkres-Kuhn alpha (selects the range of orbitals included in reordering) [default: 0.0]

int convergence;

A switch for stochastic reordering algorithm to choose what happens when an acceptable permutation isn't generated in the set number of attempts:

- 0: returns the identity permutation (does not require convergence)
- 1: exits and prints an error (requires convergence)

int max_number_attempts;

The maximum number of hops that an be attempted before either choosing the identity or exiting in stochastic reordering algorithm 3.

double min_probability_reordering;

The probability threshold for stochastic state reordering algorithm. If a probability for a multistate stransition is below this value, it will be disregarded and set to 0. The rest of the probabilities will be renormalized

Hop proposal probability

$$P_{i \to f}^{P} = \max\left(0, \frac{\Delta t}{\hbar P_{ii}} Im \left[P_{i,f} H_{f,i}^{vib} - H_{i,f}^{vib} P_{f,i}\right]\right)$$

Tully, J. C. J. Chem. Phys. 1990, 93, 1061

Options:

- [-1]: adiabatic dynamics, no hops [default]
- 0: FSSH
- 1: GFSH
- 2: MSSH
- 3: DISH

 $P_{i \to f}^{P} = \max\left(0, \frac{\Delta P_{ff}}{P_{ff}} \frac{\Delta P_{jj}}{\sum_{k \in A} \Delta P_{kk}}\right) . i \in A, j \in B$

Wang, L.; Trivedi, D.; Prezhdo, O. V. JCTC 2014, 10, 3598

 $P^P_{i \to f}(t, t + \Delta t) = P_{ff}(t + \Delta t)$

Akimov, A. V.; Trivedi, D.; Wang, L.; Prezhdo, O. V. J. Phys. Soc. Jpn. **2015**, 84, 094002

Hop acceptance probabilities

int hop_acceptance_algo;

Options:

- 0: accept all proposed hops [default]

- 10: based on adiabatic energy - accept only those hops that can obey the energy conservation with

adiabatic potential energies

- 11: based on diabatic energy - same as 10, but we use diabatic potential energies

- 20: based on derivative coupling vectors - accept only those hops that can obey the energy conservation

by rescaling nuclear velocities along the directions of derivative couplings for the quantum nuclear DOFs

- 21: based on difference of state-specific forces - same as 20, but the rescaling is done along the vector

parallel to the difference of adiabatic forces on initial and target states

- 31: accept hops with the probability taken from the quantum Boltzmann distribution

- 32: accept hops with the probability taken from the classical Maxwell-Boltzmann distribution

- 33: accept hops with the probability taken from the updated quantum Boltzmann distribution (experimental)

 $P^A_{i \to f} = 1$

 $P_{i \to f}^A = \Theta \big(E_{kin} + E_f - E_f \big)$

Tully, J. C. J. Chem. Phys. 1990, 93, 1061

Prezhdo, O. V.; Duncan, W. R.; Prezhdo, V. V. *Prog. Surf. Sci.* **2009**, *84*, 30 $P_{i \to f}^{A} = \min\left(1, exp\left(-\frac{\Delta E}{k_{B}T}\right)\right)$

$$P_{i \to f}^{A} = 1 - \left[\operatorname{erf}\left(\left(\frac{\Delta E}{k_{B}T} \right)^{\frac{1}{2}} \right) - \sqrt{\frac{4}{\pi}} \left(\frac{\Delta E}{k_{B}T} \right)^{\frac{1}{2}} \exp\left(- \frac{\Delta E}{k_{B}T} \right)^{\frac{1}{2}} \right]$$

Momentum rescaling

int momenta_rescaling_algo;

Options:

- 0: don't rescale [default]
- 100: based on adiabatic energy, don't reverse on frustrated hops
- 101: based on adiabatic energy, reverse on frustrated hops
- 110: based on diabatic energy, don't reverse on frustrated hops
- 111: based on diabatic energy, reverse on frustrated hops
- 200: along derivative coupling vectors, don't reverse on frustrated hops
- 201: along derivative coupling vectors, reverse on frustrated hops
- 210: along difference of state-specific forces, don't reverse on frustrated hops
- 211: along difference of state-specific forces, reverse on frustrated hops

Decoherence

double decoherence_algo;

Options:

- [-1]: no decoherence [default]
- 0: SDM and alike
- 1: instantaneous decoherence options (ID-S, ID-A, ID-C)
- 2: AFSSH

int collapse_option;

How to collapse wavefunction amplitudes in the decoherence schemes:

 - 0: by rescaling the magnitude of the amplitude vector elements, but preserving "phase" [default]

- 1: by resetting the amplitudes to 1.0+0.0j. This option changes phase

SDM

Granucci, G.; Persico, M. J. Chem. Phys. 2007, 126, 134114.

gradually change the amplitudes

$$C_{i}' = C_{i} \exp\left(-\frac{\Delta t}{\tau_{if}}\right), \forall i \neq f$$
$$C_{f}' = C_{f} \sqrt{\frac{1 - \sum_{i \neq f} |C_{i}'|^{2}}{|C_{f}|^{2}}}$$

ID-A

Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. *J. Chem. Phys.* **2013**, *138*, 224111.

- on a successful hop (ID-S)
- on an attempted hop (ID-A)
- at every timestep (ID-C)

Wavefunction reduction $C_f = 1, C_i = 0, \forall i \neq f$

int instantaneous_decoherence_variant;

- 0: ID-S
- 1: ID-A [default]
- 2: ID-C consistent ID an experimental algorithm

Decoherence: A-FSSH

Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility

Cite as: J. Chem. Phys. **143**, 134106 (2015); https://doi.org/10.1063/1.4930548 Submitted: 17 June 2015 . Accepted: 24 August 2015 . Published Online: 02 October 2015

Amber Jain, Michael F. Herman 💿, Wenjun Ouyang, and Joseph E. Subotnik

Propagate extra set of variables

 $\boldsymbol{\delta} \vec{\mathbf{R}} = \mathrm{Tr}_{N}[(\vec{R} - \vec{R}_{\mathrm{SH}})\boldsymbol{\rho}]$

 $\boldsymbol{\delta} \vec{\mathbf{P}} = \mathrm{Tr}_{N}[(\vec{P} - \vec{P}_{\mathrm{SH}})\boldsymbol{\rho}]$

These variables define the rates for wavefunction collapse

An Efficient, Augmented Surface Hopping Algorithm That Includes Decoherence for Use in Large-Scale Simulations

Amber Jain,* Ethan Alguire, and Joseph E. Subotnik

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States

$\frac{\mathrm{d}}{\mathrm{d}t}\delta\vec{R}_{jk} =$	$\left[-\frac{i}{\hbar}\mathbf{V}-\mathbf{T},\boldsymbol{\delta}\vec{\mathbf{R}}\right]_{jk}$	$+ \frac{\delta \vec{P}_{jk}}{\vec{m}}$
--	---	---

$$\frac{\mathrm{d}}{\mathrm{d}t}\delta\vec{P}_{jk} = \left[-\frac{i}{\hbar}\mathbf{V} - \mathbf{T}, \,\delta\vec{\mathbf{P}}\right]_{jk} + \frac{1}{2}(\delta\vec{\mathbf{F}}\boldsymbol{\sigma} + \boldsymbol{\sigma}\delta\vec{\mathbf{F}})_{jk}$$

5. Compute the probability to collapse the amplitudes for the state $n \neq i$ (where *i* is the active surface) as

$$\gamma_n^{collapse} = dt \left(\frac{(F_{nn} - F_{ii})\delta x_{nn}}{2t} - \frac{2|F_{in}\delta x_{nn}|}{t} \right).$$
(A10)

Also compute the probability to reset the moments as

$$\gamma_n^{reset} = -dt \left(\frac{(F_{nn} - F_{ii})\delta x_{nn}}{2\hbar} \right). \tag{A11}$$

void compute_dynamics(MATRIX& q, MATRIX& p, MATRIX& invM, CMATRIX& C, vector<CMATRIX>& projectors, vector<int>& act_states, nHamiltonian& ham, bp::object py_funct, bp::dict model_params, bp::dict dyn_params, Random& rnd);

void compute_dynamics(MATRIX& q, MATRIX& p, MATRIX& invM, CMATRIX& C, vector<CMATRIX>& projectors, vector<int>& act_states, nHamiltonian& ham, bp::ot ject py_funct, bp::dict& model_params, bp::dict& dyn_params, Random& rnd, vector<Thermostat>& therr, dyn_variables& dyn_var);

Dephasing times

int decoherence_times_type;

- 0 : read from input
- 1:EDC

SDM/EDC

Granucci, G.; Persico, M. J. Chem. Phys 2007, 126, 134114.

double decoherence ____param;

double decoherence_eps_param;

 $\tau_{ij}^{EDC} = -$

mSDM

Akimov, A. V.; Prezhdo, O. V. *J. Phys. Chem. Lett.* **2013**, *4*, 3857 Smith, B.; Akimov, A. V. *J. Chem.Phys.* **2019**, 151, 124107

DISH

Decoherence interval

 $\tau_i^{-1} = \sum_{j \neq i} P_{jj} \tau_{ij}^{-1}$

Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. *J. Chem. Phys.* **2012**, *137*, 22A545

Phase-informed Decoherence times

Sifain, A. E.; Wang, L.; Tretiak, S.; Prezhdo, O. V.

Many ways of doing the dynamics

Corrections

BBCE

thermal Ehrenfest

$$H_{ij}^{Bastida,adi} = |c_j|f_{ij}V_{ij} + |c_i|f_{ji}V_{ji}$$

$$f_{ij} = \left(\frac{2}{1 + \exp\left(-\frac{E_{ij}}{k_B T}\right)}\right)^{1/2}$$

Bastida, A. et al. *Chem. Phys. Lett.* **2006**, *417*, 53

• State tracking (e.g. mincost)

• Phase corrections (Akimov, A. V J. Phys. Chem. Lett. 2018, 9, 6096)

Forces & Nuclear Dynamics

- Adiabatic (NBRA, various states)
- TSH
- Ehrenfest
- Quantized nuclei (Bohmian trajectories?)
- Bath: Langevin, Nose-Hoover, etc.

- Frustrated hops:
 - Reverse momenta
 - Keep momenta
- Accepted hops:
 - Don't rescale momenta
 - Rescale along NACs
 - Rescale along force difference

Parallelization, multiple methods/initial conditions

Initialization of nuclear variables

Initialization of electronic variables, transformation to the desired representation, nHamiltonian object construction and initialization

Initialization of default parameters, writing files, computing some observables, thermostat variables, iteration over nuclear timesteps

TSH/Ehrenfest and decoherence algorithms, trajectory coupling, Hamiltonian properties updates (calling external Python functions)

nHamiltonian class

How it works with dynamics

$$i\hbar \frac{dC_{adi}}{dt} = H_{adi}C_{adi} - i\hbar \sum_{n} D_{adi,n} \frac{p_n}{m_n} C_{adi} = H_{vib}C_{adi}$$

$$H_{vib,adi} = H_{adi} - i\hbar d$$

- compute_hvib_adi, compute_hvib_dia

NAC (scalars)

$$d = \sum_{n} D_{adi,n} \frac{p_n}{m_n}$$

- compute_nac_adi, compute_nac_dia

Computing H_{dia}^{vib}

Blue = Required Input
Green = Output
Green with D = Can be set up directly via Python function call

Function	Q	Р	H _{dia}	D _{dia}	d _{dia}	H ^{vib} dia
nHamiltonian:: compute_diabatic (bp ::object py_funct)			D	D	D	D
nHamiltonian:: compute_nac_dia ()						
nHamiltonian:: compute_hvib_dia ()						

Computing H_{adi}^{vib}

Function	Q	Р	S	H _{dia}	∇H _{dia}	D _{dia}	U	H _{adi}	∇H _{adi}	D _{adi}	d _{adi}	H_{adi}^{vib}
nHamiltonian:: compute_diabatic (bp::obje ct py_funct)			D	D	D	D						
nHamiltonian:: compute_adiabatic ()												
nHamiltonian:: compute_adiabatic (bp::obj ect py_funct)							D	D	D	D	D	D
nHamiltonian:: compute_nac_adi ()												
nHamiltonian:: compute_hvib_adi ()												

nHamiltonian is hierarchical

nHamiltonian

- level
- id
- nHamiltonian* parent
- vector<nHamiltonian*> children
- nnucl, nadi, ndia
- CMATRIX* ham_dia, nac_dia, hvib_dia
- CMATRIX* ham_adi, nac_adi, hvib_adi
- CMATRIX* ovlp_dia, time_overlap_dia
- CMATRIX* ovlp_adi, time_overlap_adi
- CMATRIX* basis_transform
- vector<CMATRIX*> dc1_adi, dc1_dia
- vector<CMATRIX*> d1ham_adi, d1ham_dia
- ampl_dia2adi
- ampl_adi2dia

Keep Dynamical Workflow Fixed

User defines how to run the dynamical simulation

for i in range(500):
 propagate_el(Cdia, Cadi, Hvib, Sdia, 0.5*dt, rep)
 p = p + 0.5*f*dt
 q = q + dt*p/m
 compute_model(model, Hdia, Sdia, d1ham_dia, dc1_dia, q, params)
 ham.compute_adiabatic(1);
 f = compute_frc(ham, Cdia, Cadi, rep)
 p = p + 0.5*f*dt
 Hvib = compute_Hvib(Hdia, Hadi, dc1_dia, dc1_adi, p, m, rep)
 propagate_el(Cdia, Cadi, Hvib, Sdia, 0.5*dt, rep)
Etot = compute_etot(ham, p, Cdia, Cadi, m, rep)

User defines what function to use to compute entries in the Hamiltonian object (diabatic/adiabatic Ham, overlap matrix, derivatives, etc.) - NEXT

Example: Model Calculations

Initialize Python objects

def model2(q, params):

```
obj = tmp()
obj.ham dia = CMATRIX(2,2); obj.ovlp dia = CMATRIX(2,2);
obj.d1ham_dia = CMATRIXList(); obj.d1ham_dia.append( CMATRIX(2,2))
obj.dc1 dia = CMATRIXList(); obj.dc1 dia.append( CMATRIX(2,2))
```

```
x = q.get(0)
x0,k,D,V = params["x0"], params["k"], params["D"], params["V"]
```

```
obj.ovlp dia.set(0,0, 1.0+0.0j); obj.ovlp dia.set(0,1, 0.0+0.0j);
obj.ovlp dia.set(1,0, 0.0+0.0j); obj.ovlp dia.set(1,1, 1.0+0.0j);
```

```
obj.ham dia.set(0,0, k*x*x*(1.0+0.0j)); obj.ham dia.set(0,1, V*(1.0+0.0j));
obj.ham dia.set(1,0, V*(1.0+0.0j));
                                        obj.ham dia.set(1,1, (k*(x-x0)**2 + D)*(1.0.
```

for i in [0]:

```
Set matrix elements according to
obj.d1ham dia[i].set(0,0, 2.0*k*x*(1.0+0.0j)); obj.d1ham dia[i].set(0,1, 0.0+0.0j);
obj.d1ham dia[i].set(1,0, 0.0+0.0j);
                                         obj.d1ham dia[i].set(1,1,2.0*k*(x-x0)*(1.0+0.0j));
```

```
obj.dc1 dia[i].set(0,0, 0.0+0.0j); obj.dc1 dia[i].set(0,1,-0.1+0.0j);
obj.dc1 dia[i].set(1,0, 0.1+0.0j); obj.dc1 dia[i].set(1,1, 0.0+0.0j);
```

return obj

Example: Atomistic Calculations

def model atomistic(q, params, indx):

```
natoms = params["natoms"]; ndof = q.num of rows; ndia = params[ "ndia" ]
params["output filename"] = "detailed.out"
```

```
obj = tmp()
obj.ham dia = CMATRIX(1,1);
obj.ovlp dia = CMATRIX(1,1);
                                    obj.ovlp dia.set(0,0, 1.0+0.0j)
obj.d1ham dia = CMATRIXList();
for i in xrange(ndof):
  obj.d1ham dia.append( CMATRIX(1,1) )
```

```
os.system("mkdir wd/job "+str(indx))
os.system("cp dftb in.hsd wd/job "+str(indx)) #+"/dftb in.hsd")
os.chdir("wd/job "+str(indx))
```

Initialize Python objects

```
Prepare and Run external program
```

your model

```
create input.update coordinates(q, params)
os.system("srun %s < dftb in.hsd > out" % (exe name)) # DFTB calculations are run here!
dftb forces = parse output.get forces(params)
                                                                       Set matrix elements according to
os.chdir("../../")
```

```
for i in xrange(ndof):
  obj.d1ham_dia[i].set(0,0, dftb_forces[i]*(-1.0+0.0j))
  obj.dc1 dia[i].set(0, 0, 0.0+0.0j)
```

return obj