

Demo and hands on with pyUNIxMD + DFTB

Daeho Han July 11, 2022

CONTACT

Excited State Phenomena Computational Chemistry Lab. Office/Lab. 108) 805 Tel. +82 52 217 2918 Web. http://skmin.unist.ac.kr/

Setting

Installation of pyUNIxMD

Go to your project directory, and git clone pyUNIxMD package.

- \$ cd /your-project-directory/
- \$ git clone <u>https://github.com/skmin-lab/unixmd.git</u>

Activate pyunixmd conda environment.

\$ conda activate pyunixmd

Time-consuming calculations such as electronic evolution in PyUNIxMD are done with C functions through Cython package. Thus, we need to compile C functions.

\$ cd /your-project-directory/unixmd/
\$ python setup.py build_ext -b ./src/build

Setting

• Tutorial materials

Clone the hands-on materials by

\$ git clone <u>https://github.com/compchem-cybertraining/Tutorials_pyUNIxMD.git</u>

Get back to your directory and copy an environment setting (you may need to change PYTHONPATH variable in the file) and source script for using PyUNIxMD and DFTB+

\$ cd ..

\$ cp /projects/academic/cyberwksp21/Students/dhan/set_pyunixmd_dftb.sh .

\$ source set_pyunixmd_dftb.sh

```
set_pyunixmd+dftb.sh
#jounixmd+dftb.sh
#pyUNixMD
export
PYTHONPATH=$PYTHONPATH:/projects/academic/cyberwksp21/Students/$USER/unixmd/src
#DFTB+ Change this if necessary.
module load intel/20.2
module load intel-mpi/2020.2
export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so
source /util/academic/intel/20.2/compilers_and_libraries_2020.2.254/linux/bin/compilervars.sh
intel64
source
/util/academic/intel/20.2/compilers_and_libraries_2020.2.254/linux/mpi/intel64/bin/mpivars.sh
```

pyUNIxMD

- pyUNIxMD is an object-oriented Python program for molecular dynamics simulations involving multiple electronic states. It is mainly for studying the nonadiabatic dynamics of excited molecules.
- Each ingredient of nonadiabatic dynamics is treated as a Class, which makes it easy to manage and analyze the MD quantities.

J. Comput. Chem. **2021**, 42, 1755-1766.

pyUNIxMD

• A general workflow of a NAMD with pyUNIxMD. Each object exchanges the data in NAMD.

• pyUNIxMD gives an NAMD interface with a lot of electronic structure programs.

Program	Method	BOMD	Ehrenfest	FSSH	SHXF	CTMQC
Columbus	CASSCF	\checkmark	✓	✓	✓	\checkmark
Columbus	MRCL	✓	✓	✓	\checkmark	\checkmark
	TDDFTB	✓	-	✓	✓	-
DFIB+	DFTB/SSR	✓	✓	✓	✓	✓
Gaussian 09	TDDFT	✓	-	✓	✓	-
Molpro	CASSCF	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Q-Chem	TDDFT	\checkmark	✓	\checkmark	\checkmark	\checkmark
TeraChem	SSR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- DFTB+ is an open-source software package based on density functional theory tight binding (DFTB).
- This is a semi-empirical method where the KS Hamiltonian matrix represented by a minimal atomic basis and the total energy elements are parametrized by Slater-Koster parameters. This allows long-timescale simulations of large systems with reasonable accuracy while having faster computational time than usual ab initio methods.

$$\begin{split} &\sum_{\nu}^{M} c_{\nu i} (H_{\mu\nu} - \varepsilon_{i} S_{\mu\nu}) = 0, \quad \forall \mu, i \\ &H_{\mu\nu} = \langle \varphi_{\mu} | \hat{H}_{0} | \varphi_{\nu} \rangle + \frac{1}{2} S_{\mu\nu} \sum_{\xi}^{N} (\gamma_{\alpha\xi} + \gamma_{\beta\xi}) \Delta q_{\xi} \\ &= H_{\mu\nu}^{0} + H_{\mu\nu}^{1}, \quad S_{\mu\nu} = \langle \varphi_{\mu} | \varphi_{\nu} \rangle, \quad \forall \mu \epsilon \alpha, \quad \nu \epsilon \rho_{\mu\nu} = \langle \varphi_{\mu} | \varphi_{\mu\nu} \rangle \end{split}$$

To solve a secular equation from Kohn-Sham DFT, each ingredient is parameterized with ab initio calculation of reference systems and is given a function of atomic distances.

Phys. Rev. B **1998** 58, 7260. *J. Chem. Phys.* **2020**, 152, 124101.

You can obtain Slater-Koster parameter files in https://dftb.org/parameters/download. Parameters used in this tutorial are already in the tutorial directory.
 /your-project-directory/Tutorials_pyunixmd/demo_pyunixmd_dftb/mio-1-1

/your-project-directory/Tutorials_pyunixmd/demo_pyunixmd_dftb/ob2-1-1/base

dftb.org	the DF	TB wel	osite									
About DFTB	Downloa	ad of Slate	er-Koster files									
Codes	Below you fi	ind the table	es with the actual versions of the available	Slater-Koster files. The first column of each table contains the								
 Parameters 	Hyphenation of elements (A-B-C) means that all possible combinations of SK files within this set are available in the repository,											
Introduction	atthough not necessarily under the same tag. In this case the second column (required field) shows the location of the rest. The last column contains a short description of the set. For a more detailed description and for download click on the name of the set.											
Download	Please note	Please note, that unless explicitely indicated, the sets are usually not compatible to each other. Therefore, the parameter files										
Contact	from two set	ts should no	t be mixed (although your program may no	t even notice the incompatibility of the files used).								
 Sitemap 	For you con	venience, yo	ou may also download all publicly available	e SK-sets together within one archive.								
	General These sets w have been t from those	purpose were created thoroughly to included in	parameter sets d to have a good performance over a wide ested for a broad range of systems. How o the tests, please evaluate the sets first	range of elements and over a wide range of applications. They ever, if you intend to use them for systems very different t.								
	Name	Requires	Elements	Short description								
	3ob		Br-C-Ca-Cl-F-H-I-K-Mg-N-Na-O-P-S- Zn	DFTB3 files for bio and organic molecules								
	matsci		Al-O-H Al-Si-O-H Cu-Si-Al-Na-O-H Ti-P-O-N-C-H O-N-C-B-H Al-O-C-H Si-P-N-O-C-H	Collection of some sets used for various problems in materials science. (For some of the interactions no published tests available!)								
	mio		H-C-N-O-S-P	SCC files for bio or organic molecules								
	ob2		H-C-N-O	Long range corrected parameterization for bio and organic molecules								
	pbc		Si-F-O-N-C-H Fe	SCC files for solids and surfaces								

• DFTB+ provides with excited-state calculations: TD-DFTB and REKS(spin-Restricted Ensemble Kohn-Sham)-DFTB.

In the TD-DFTB implementation, DFTB+ uses ground-state SCF calculation as reference and solve the Casida equation constructed from parametrized variables.
 Phys. Rev. B 2001, 63, 085108.

$$\sum_{ij\sigma} \left[\omega_{ij}^2 \delta_{ik} \delta_{jl} \delta_{\sigma\tau} + 2 \sqrt{\omega_{ij}} K_{ij\sigma,kl\tau} \sqrt{\omega_{kl}} \right] F_{ij\sigma}^I = \omega_I^2 F_{kl\tau}^I$$
The response matrix is described by the reference DFTB calculations.

• The TD-DFTB implementation of DFTB+ does not provide with nonadiabatic coupling vectors (NACVs) or nonadiabatic coupling matrix elements (NACMEs), so we calculate them by evaluating wave function overlap.

$$\dot{C}_{n} = -\frac{i}{\hbar} E_{n} C_{n} - \sum_{k} \tau_{nk} C_{k} \quad \tau_{nk} = \langle \Psi_{n} | \partial_{t} | \Psi_{k} \rangle \quad |\Psi_{n}\rangle = \sum_{ia} C_{ia}^{n} |\Phi_{i}^{a}\rangle$$
$$\tau_{nk} = \sum_{ia} C_{ia}^{n} \partial_{t} C_{ia}^{k} + \sum_{iab} C_{ia}^{n} C_{ib}^{k} \langle \phi_{a} | \partial_{t} \phi_{b} \rangle - \sum_{ija} P_{ij} C_{ia}^{n} C_{ja}^{k} \langle \phi_{j} | \partial_{t} \phi_{i} \rangle$$

 C_{ia}^{n} 's are excitation coefficients of CIS-like expansion in TDDFT.

J. Phys. Chem. Lett. 2015, 6, 21, 4200–4203.

• In PyUNIxMD, doubled molecule technique is used to obtain wavefunction overlap.

$$\begin{aligned} \tau_{nk} &= \sum_{ia} C_{ia}^{n} \partial_{t} C_{ia}^{k} + \sum_{iab} C_{ia}^{n} C_{ib}^{k} \langle \phi_{a} | \partial_{t} \phi_{b} \rangle - \sum_{ija} P_{ij} C_{ia}^{n} C_{ja}^{k} \langle \phi_{j} | \partial_{t} \phi_{i} \rangle \\ \langle \phi_{j} | \partial_{t} \phi_{i} \rangle &\approx \left\langle \phi_{j}(t) \left| \frac{\phi_{i}(t + \Delta t) - \phi_{i}(t - \Delta t)}{2\Delta t} \right\rangle \\ &= \frac{1}{2\Delta t} \left(\left\langle \phi_{j}(t) | \phi_{i}(t + \Delta t) \right\rangle - \left\langle \phi_{j}(t) | \phi_{i}(t - \Delta t) \right\rangle \right) \\ &\approx \frac{1}{2\Delta t} \left(\left\langle \phi_{j}(t) | \phi_{i}(t + \Delta t) \right\rangle - \left\langle \phi_{j}(t + \Delta t) | \phi_{i}(t) \right\rangle \right) \end{aligned}$$

...

 After DFTB+ v20.2, overlap calculation in DFTB+ checks atomic distances of inputs and halt if there is a certain pair too close each other. Thus, this checking routine is needed to be commented out if you want to perform wave function overlap calculation.

```
! Sort neighbours for all atom by distance
   allocate(indx(maxNeighbour))
   do iAtom1 = 1, nAtom
    nn1 = neigh%nNeighbour(iAtom1)
    call index_heap_sort(indx(1:nn1), neigh%neighDist2(1:nn1, iAtom1), tolSameDist2)
    neigh%iNeighbour(1:nn1, iAtom1) = neigh%iNeighbour(indx(:nn1), iAtom1)
    neigh%neighDist2(1:nn1, iAtom1) = neigh%neighDist2(indx(:nn1), iAtom1)
   end do
   call reallocateArrays1(img2CentCell, iCellVec, coord, nAllAtom)
   check for atoms on top of each other
   do iAtom1 = 1, nAtom
    do nn1 = 1, neigh%nNeighbour(iAtom1)
     if (neigh%neighDist2(nn1, iAtom1) < minNeighDist) then
       iAtom2 = img2CentCell(neigh%iNeighbour(nn1, iAtom1))
       write (strError, "(A,I0,A,I0,A)") "Atoms ",iAtom1, " and ", iAtom2, " too close together"
       call error(strError)
     end if
    end do
   end do
 end subroutine updateNeighbourList
```

dftbplus-20.2.1/prog/dftb+/lib_dftb/periodic.F90

The DFTB binary used in this tutorial is compiled after commenting out this part.

- Instead of single determinants, the spin-restricted ensemble-referenced Kohn–Sham (REKS) method and its state-interaction state-averaged variant (SISA-REKS or SSR) are based on ensemble density functional theory. The semi-empirical version of SSR(2,2) is implemented in DFTB+.
- The energy of the multireference state is expanded in terms of 6 microstates with fixed integer occupations of the active orbitals ϕ_a and ϕ_b .

SA(2,2)-REKS

Perfectly spin-paired singlet state

$$E^{PPS} = \sum_{L} C_{L}^{PPS} E_{L}[\rho_{L}]$$

Open-shell singlet state

$$E^{OSS} = \sum_{L} C_{L}^{OSS} E_{L}[\rho_{L}]$$

Optimize $E^{SA} = w_0 E^{PPS} + w_1 E^{OSS}$ with respect to the coefficients and the orbitals.

Solve the 2×2 secular equation to obtain fully adiabatic solutions.

$$\begin{pmatrix} E^{PPS} & \Delta^{SA} \\ \Delta^{SA} & E^{OSS} \end{pmatrix} \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}$$

=
$$\begin{pmatrix} E_0^{SSR} & 0 \\ 0 & E_1^{SSR} \end{pmatrix} \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}$$

• Forces and NACVs are evaluated analytically by the coupled-perturbed equation.

$$\mathbf{A}\mathbf{U}^{\lambda} = \mathbf{B}^{\lambda} \qquad \sum_{k < l} A_{ij,kl} U_{kl}^{\lambda} = B_{ij}^{\lambda} \qquad \frac{\partial}{\partial \lambda} C_{\mu i} = \sum_{j} C_{\mu j} U_{ji}^{\prime \lambda} \qquad U_{ji}^{\prime \lambda} = -\frac{1}{2} \frac{\partial^{\prime} S_{ji}}{\partial \lambda} + U_{ji}^{\lambda}$$

J. Chem. Theory Comput. 2019, 15, 5, 3021-3032.

Tutorial #1: Thermal sampling of target molecules: CNH₄⁺, PSB3

Tutorial #2: SH(EDC) and SHXF dynamics of CNH₄⁺ with TD-DFTB

Tutorial #3: Investigating PES near a CI with TD-DFTB and DFTB/SSR

Tutorial #4: SH(EDC) and SHXF dynamics of CNH₄⁺ with DFTB/SSR

Tutorial #5: SHXF dynamics of PSB3 with DFTB/SSR

Tutorial #1: Thermal sampling of target molecules: CNH_4^+ , PSB3

- Before running nonadiabatic dynamics, we need a proper sampling from a phase space to mimic an initial nuclear wave packet.
- Thermal sampling is to sample configurations and momenta of a system from the phase space imposing thermal equilibrium.

Tutorial #1: Thermal sampling of target molecules: CNH₄⁺, PSB3

- BOMD details for the thermal sampling
 - > Charge=+1; Only 1 BO state, that is, the ground state is considered.
 - > DFTB calculation is done to obtain *E* with mio-1-1 Slater-Koster (SK) parameters.
 - > Nosé-Hoover Chain thermostat is employed with the time coupling constant is 10.0 fs.
 - > BOMD dynamics of CNH_4^+ at the ground state during 25 ps; dt=0.5 fs.

Tutorial #1: Thermal sampling of target molecules: CNH₄+, PSB3

• Write a running script (run.py) for pyUNIxMD.

Tutorial #1: Thermal sampling of target molecules: CNH₄+, PSB3

Run the dynamics. The standard output gives an outline of the dynamics and information of each MD step.

\$ python run.py >log

PyUNIxMD version 20.1

< Developers >
Seung Kyu Min, In Seong Lee, Jong-Kwon Ha, Daeho Han,
Kicheol Kim, Tae In Kim, Sung Wook Moon

Please cite PyUNIxMD as follows: I. S. Lee, J.-K. Ha, D. Han, T. I. Kim, S. W. Moon, & S. K. Min. PyUNIxMD: A Python-based excited state molecular dynamics package. Journal of Computational Chemistry, 42:1755-1766. 2021

PyUNIxMD begins on 2022-06-22 22:05:50

Initial Coordinate (au)										
	Х	Y	Z	Mass						
С	-0.08455358	0.05389181	0.08540288	21894.16674						
Ν	-0.08393586	-0.12187164	2.41127171	25532.72508						
Н	1.69172445	-0.06757025	-0.96764649	1837.36222						
Н	1.66456208	-0.13602066	3.52393672	1837.36222						
Н	-1.54553026	0.01952758	3.43894722	1837.36222						
Н	-1.92892592	-0.03024032	-1.04055046	1837.36222						
		_								
		•								
		•								

		Dynamics I	Information	
-				
	QM Program	=	dftbplus	
	QM Method	=	DFTB	
	-			
	MQC Method	=	BOMD	
	Time Interval (fs)	=	0.500000	
	Initial State (0:GS)	=	0	
	Nuclear Step	=	50000	
	· · · · · · · · · · · · · · · · · · ·			
	Output Frequency	=	1	
	Verbosity Level	=	0	

Thermostat Information

Thermostat	=	Nose-Hoover chain	
Target Temperature (K)	=	300.000	
Time Scale (fs)	=	10.000	
Chain Length	=	3	
Order	=	3	
Integrator Steps	=	1	

	Start Dynamics										
#INFO	STEP	State	Kinetic(H)	Potential(H)	Total(H)	Temperature(H	<)				
INFO	0	0	0.0000000	-5.26476310	-5.26476310	0.00000					
INFO	1	0	0.00136572	-5.26617565	-5.26480993	71.876421					
INFO	2	0	0.00477962	-5.26969234	-5.26491272	251.547257					
INFO	3	0	0.00864259	-5.27364892	-5.26500633	454.851833					
INFO	4	0	0.01137980	-5.27643681	-5.26505701	598.908506					
INFO	5	0	0.01213073	-5.27720031	-5.26506958	638.429526					
						Cont	inue				

Tutorial #1: Thermal sampling of target molecules: CNH₄⁺, PSB3

In the md/ directory, there are a movie file (MOVIE.xyz) and energy profile (MDENERGY) of the dynamics.

MDENERGY

#

MOVIE.xyz

Step	Kinetic(H)	Potential(H)	Total(H)	E(0)(H)		6						
0	0.0000000	-5.26476310	-5.26476310	-5.26476310		Step:	0	Position(A)			Velocity(au)	
1	0.00136572	-5.26617565	-5.26480993	-5.26617565	C		-0.04474383	0.02851832	0.04519326	0.00000000	0.00000000	0.00000000
2	0.00477962	-5.26969234	-5.26491272	-5.26969234	N	J	-0.04441695	-0.06449170	1.27599013	0.00000000	0.00000000	0.00000000
3	0.00864259	-5.27364892	-5.26500633	-5.27364892	Н	1	0.89522209	-0.03575664	-0.51205651	0.00000000	0.00000000	0.00000000
4	0.01137980	-5.27643681	-5.26505701	-5.27643681	Н	1	0.88084838	-0.07197904	1.86478714	0.00000000	0.00000000	0.00000000
5	0.01213073	-5.27720031	-5.26506958	-5.27720031	Н	1	-0.81785945	0.01033355	1.81981263	0.00000000	0.00000000	0.00000000
6	0.01090941	-5.27596079	-5.26505138	-5.27596079	Н	1	-1.02074371	-0.01600249	-0.55063563	0.00000000	0.00000000	0.00000000
7	0.00842216	-5.27343345	-5.26501129	-5.27343345		6						
8	0.00576658	-5.27072789	-5.26496131	-5.27072789		Step:	1	Position(A)			Velocity(au)	
9	0.00404730	-5.26897788	-5.26493058	-5.26897788	C		-0.04485029	0.02845637	0.04476312	-0.00001910	-0.00001132	-0.00007793
10	0.00395230	-5.26889641	-5.26494411	-5.26889641	Ν	J	-0.04393518	-0.06448518	1.27620180	0.00008504	0.00000144	0.00003957
11	0.00547636	-5.27048207	-5.26500570	-5.27048207	Н	1	0.89556274	-0.03555676	-0.51231794	0.00006118	0.00003654	-0.00004719
12	0.00795132	-5.27305155	-5.26510023	-5.27305155	Н	ł	0.87875747	-0.07206956	1.86326786	-0.00037395	-0.00001657	-0.00027232
13	0.01034960	-5.27555888	-5.26520929	-5.27555888	Н	ł	-0.82264140	0.01045389	1.82287369	-0.00084000	0.00001888	0.00053555
14	0.01167268	-5.27699140	-5.26531872	-5.27699140	Н	ł	-1.01963776	-0.01558464	-0.54973191	0.00019865	0.00007609	0.00016278
15	0.01127518	-5.27667887	-5.26540369	-5.27667887		6						
16	0.00912401	-5.27455954	-5.26543553	-5.27455954		Step:	2	Position(A)			Velocity(au)	
17	0.00595008	-5.27134913	-5.26539905	-5.27134913	C	-	-0.04516162	0.02827061	0.04348857	-0.00003674	-0.00002264	-0.00015298
18	0.00310808	-5.26843828	-5.26533020	-5.26843828	N	1	-0.04255682	-0.06446022	1.27685559	0.00015861	0.00000379	0.00008200
19	0.00197998	-5.26728305	-5.26530307	-5.26728305	H	ł	0.89656032	-0.03495741	-0.51308885	0.00011800	0.00007302	-0.00009198
20	0.00314779	-5.26851440	-5.26536661	-5.26851440	H	ł	0.87266846	-0.07234145	1.85883038	-0.00071431	-0.00003321	-0.00052258
21	0.00599259	-5.27149558	-5.26550299	-5.27149558	H	ł	-0.83623379	0.01074659	1.83152739	-0.00155296	0.00002642	0.00098225
22	0.00909822	-5.27475747	-5.26565925	-5.27475747	H	ł	-1.01639830	-0.01433809	-0.54707488	0.00038296	0.00015094	0.00031567
23	0.01109985	-5.27689395	-5.26579410	-5.27689395		6						
24	0.01132049	-5.27721435	-5.26589386	-5.27721435		Step:	3	Position(A)			Velocity(au)	
25	0.00991230	-5.27586492	-5.26595262	-5.27586492	C	2	-0.04565373	0.02796121	0.04141735	-0.00005142	-0.00003393	-0.00022211
26	0.00763470	-5.27361391	-5.26597922	-5.27361391	N	1	-0.04046629	-0.06440236	1.27799527	0.00021167	0.00000768	0.00012818
27	0.00547580	-5.27146920	-5.26599340	-5.27146920	Н	ł	0.89814358	-0.03395980	-0.51432972	0.00016637	0.00010928	-0.00013203
28	0.00423587	-5.27026157	-5.26602571	-5.27026157	H	1	0.86313459	-0.07279595	1.85183844	-0.00098664	-0.00005004	-0.00072794

Tutorial #1: Thermal sampling of target molecules: CNH_4^+ , PSB3

• Employing the configurations and momenta from the MD trajectories, we can investigate the distribution of kinetic energies and instantaneous temperatures.

$$\sum_{\nu} \frac{1}{2} M_{\nu} \mathbf{V}_{\nu}^{2}(t) = \frac{3N-6}{2} kT(t)$$

From the last 5,000 MD frames,

- SH(EDC) dynamics details
 - > Upto 3 electronic states (S₀, S₁, S₂) are considered; S₂ → S₁ dynamics of CNH₄⁺ is interested.
 - > TDDFTB calculation is done to obtain *E*, **F**, NACME with mio-1-1 Slater-Koster (SK) parameters.
 - > Nosé-Hoover Chain thermostat is employed to proceed the dynamics w/o dissociation of CNH_4^+ .
 - > SH(EDC) dynamics of CNH_4^+ is run during 30 fs; dt=0.25 fs.
 - > Energy-based decoherence correction (EDC) can be used if you want.

$$\dot{C}_n = -\frac{i}{\hbar} E_n C_n - \sum_k \tau_{nk} C_k + \xi_n \quad \xi_{n\neq a}^{\text{SHEDC}} = -\frac{|E_n - E_a|}{\hbar} \left(1 + \frac{\alpha}{T}\right)^{-1} C_{n\neq a}$$

J. Chem. Phys. 2010, 133, 134111.

• Prepare running scripts (run.py).

```
from molecule import Molecule
from thermostat import NHC
import qm, mqc
# Define the target system.
with open("geom.xyz", "r") as fp:
    geom = fp.read()
                                                                        Upto 3 electronic states is considered. \Rightarrow nstates=3
mol = Molecule(geometry=geom, nstates=3, charge=+1)
# Set OM method.
qm = qm.dftbplus.DFTB(molecule=mol, version="20.1", install_path="/user/username/_install_dftb_20.1/", sk_path="/user/username/mio-1-1/")
                                                                            Change the paths accordingly!
thermo = NHC(time scale = 3.0, temperature=300.)
# Determine MD method.
md = mqc.SH(molecule=mol, thermostat=thermo, nsteps=120, nesteps=1000, dt=0.25, istate=2, elec object="density", hop rescale="energy",
hop reject="keep")
# Execute the simulation.
md.run(qm=qm)
                  • The initial state is the 2<sup>nd</sup> excited state (S_2). \Rightarrow istates=2
                    Electronic propagation is done w/ interpolation. \Rightarrow nestep=1000
                  ٠
                     The density matrix is propagated by electronic propagation routine. \Rightarrow elec object="density"
                  ٠
                    After a hop, nuclear velocities are rescaled according to the transition energy. \Rightarrow hop_rescale="energy"
                  •
```

- When a hop is classically frustrated, nuclear velocities are not changed. \Rightarrow hop reject="keep"
- If you want to use the energy-based decoherence, add the following argument. ⇒ dec correction="edc"

Make MD inputs with input_gen.py.
 \$ python input_gen.py -d /your-tut-dir/TUT1/01-dftb-BOMD-cnh4/sampling -f run.py -n 200

Usage:

input_gen.py -d the path of sampled xyz files -f the path of a running script (run.py) -n the number of trajectories

This script provides with MD trajectory directories (TRAJ_001, TRAJ_002, ...) where there are the running script (run.py) and an xyz file for the initial geometry/velocity (geom.xyz) copied from sampled xyz files (sample_001.xyz, sample_002.xyz ...).

Run the dynamics.\$ python submit_all.py

• You can obtain average population, coherence, etc. with statistical_analysis.py.

• BOPOP, SHSTATE:

BOPOP

SHSTATE

	$ ho_{00}$	$ ho_{11}$	$ ho_{22}$		
# Density	Matrix: populat	tion Re; see	the manual for	detail	orders
0	0.0000000	0.00000000	1.00000000		
1	0.0000001	0.00000041	0.99999958		
2	0.0000005	0.00000405	0.99999589		
3	0.00000014	0.00001526	0.99998460		
4	0.0000021	0.00004100	0.99995879		
5	0.0000033	0.00008206	0.99991761		
6	0.00000041	0.00014425	0.99985534		
7	0.0000053	0.00025982	0.99973966		
8	0.0000058	0.00051854	0.99948088		
9	0.0000065	0.00112715	0.99887220		
10	0.0000065	0.00258845	0.99741090		
11	0.0000069	0.00636965	0.99362966		
12	0.0000065	0.01778148	0.98221786		
13	0.0000066	0.06065432	0.93934502		
14	0.00000051	0.23668625	0.76331324		
15	0.0000021	0.54971721	0.45028257		
16	0.0000019	0.52392547	0.47607434		
17	0.0000057	0.33771029	0.66228914		
18	0.0000046	0.21805087	0.78194867		
19	0.0000067	0.15419903	0.84580030		
20	0.0000057	0.12318203	0.87681740		
21	0.0000047	0.11085732	0.88914221		
22	0.0000063	0.10874634	0.89125303		
23	0.0000039	0.11175457	0.88824504		
24	0.0000042	0.11687767	0.88312191		
25	0.0000047	0.12244470	0.87755483		
26	0.0000024	0.12760522	0.87239454		
27	0.0000035	0.13197230	0.86802735		
28	0.0000033	0.13544401	0.86455566		
29	0.0000017	0.13806261	0.86193721		
30	0.0000030	0.13993400	0.86006570		

٠

# Step	Running Sta	te	31	2	
0	2		32	2	<u>.</u>
1	2		33	2	-
2	2		34	2	<u>.</u>
3	2		35	2	<u>.</u>
4	2		36	2	-
5	2		37	2	-
6	2		38	2	-
7	2		39	2	-
8	2		40	2	-
9	2		41	2	
10	2		42	2	-
11	2		43	2	-
12	2		44	2	-
13	2		45	2	-
14	2		46	2	-
15	2		47	2	-
16	2		48	2	-
17	2		49	1	
18	2		50	1	
19	2		51	1	
20	2		52	1	
21	2		53	1	
22	2		54	1	
23	2		55	1	
24	2		56	1	
25	2		57	1	
26	2		58	1	
27	2		59	1	
28	2		60	1	
29	2		61	1	
30	2			•	
				•	

• BOCOH, NACMD:

BOCOH

•

NACME

		Re $ ho_{01}$	${ m Im} ho_{01}$	Re $ ho_{02}$	Im ρ_{02}	Re $ ho_{12}$	Im $ ho_{12}$			$ au_{01}$	$ au_{02}$	$ au_{12}$
#	Density	Matrix: cohe	rence Re-Im; se	e the manual for	r detail orders			#	Non-Adi	abatic Coupling	Matrix Elements	: off-diagonal
	0	0.0000000	0.0000000	0.0000000	0.0000000	0.00000000	0.0000000		0	0.0000000	0.0000000	0.0000000
	1	0.00000005	-0.00000005	-0.00005135	0.00010125	-0.00059743	0.00022971		1	0.00000491	0.00003119	0.00012830
	2	0.0000037	-0.0000028	-0.00003695	0.00022761	-0.00144225	0.00140499		2	0.0000620	0.00008031	0.00019202
	3	0.00000129	-0.0000068	-0.00003072	0.00037200	-0.00211101	0.00328735		3	0.0000866	0.00011995	0.00041379
	4	0.00000274	-0.00000101	-0.00003363	0.00045535	-0.00264597	0.00583058		4	0.00001158	0.00015243	0.00060618
	5	0.00000498	-0.00000141	-0.00002256	0.00057124	-0.00280635	0.00861284		5	0.00001449	0.00018104	0.00084356
	6	0.00000749	-0.00000175	-0.00003187	0.00063958	-0.00331243	0.01154360		6	0.00001710	0.00020483	0.00115732
	7	0.00001117	-0.00000344	-0.00001188	0.00072485	-0.00499541	0.01532300		7	0.00001913	0.00022230	0.00158551
	8	0.00001629	-0.00000590	-0.00002242	0.00076029	-0.00838246	0.02116625		8	0.00002040	0.00023303	0.00219190
	9	0.00002467	-0.00001124	-0.00000182	0.00080698	-0.01398607	0.03050034		9	0.00002081	0.00023771	0.00309556
	10	0.00003687	-0.00001817	-0.00001345	0.00080679	-0.02321727	0.04519629		10	0.00002030	0.00023790	0.00454298
	11	0.00005733	-0.00003349	0.0000047	0.00082919	-0.04008911	0.06871634		11	0.00001873	0.00023543	0.00710194
	12	0.00008931	-0.00006057	-0.00000637	0.00080197	-0.07504523	0.10878191		12	0.00001540	0.00023199	0.01224448
	13	0.00015240	-0.00012959	0.00000751	0.00078721	-0.15288059	0.18331082		13	0.00000796	0.00022821	0.02422582
	14	0.00023901	-0.00024985	0.00005972	0.00061805	-0.27746442	0.32199262		14	-0.00000863	0.00022266	0.05186830
	15	0.00028233	-0.00019544	0.00009195	0.00029686	-0.14946216	0.47454098		15	-0.00001965	0.00021578	0.07037152
	16	0.00023652	0.00020718	-0.00008549	0.00028727	0.20824401	0.45394042		16	-0.00000345	0.00021397	0.04150730
	17	0.00025537	0.00035758	-0.00002546	0.00061482	0.37316117	0.29053846		17	0.00000800	0.00020853	0.01923728
	18	0.00007005	0.00030731	-0.00000018	0.00059687	0.40256741	0.09189163		18	0.00001165	0.00020137	0.01008334
	19	-0.00009817	0.00030609	-0.00004859	0.00075127	0.35028717	-0.08786628		19	0.00001230	0.00019369	0.00598453
	20	-0.00015077	0.00021790	0.00009149	0.00070101	0.24378673	-0.22040004		20	0.00001176	0.00018620	0.00387578
	21	-0.00021781	0.00006756	-0.00003661	0.00064479	0.10985457	-0.29410864		21	0.00001069	0.00017941	0.00266898
	22	-0.00026075	-0.00001203	0.00003067	0.00074663	-0.02710598	-0.31013831		22	0.00000956	0.00017405	0.00192276
	23	-0.00019505	-0.00007364	0.00007577	0.00058288	-0.14835102	-0.27795218		23	0.0000808	0.00016362	0.00143436
	24	-0.00012817	-0.00018060	-0.00006069	0.00060571	-0.24215524	-0.21113520		24	0.0000633	0.00015660	0.00109746
	25	-0.00011376	-0.00021125	0.00006820	0.00063870	-0.30348499	-0.12389025		25	0.00000470	0.00014600	0.00086545
	26	-0.00002686	-0.00017435	0.00003054	0.00046023	-0.33239997	-0.02885051		26	0.00000281	0.00013632	0.00069466
	27	0.00006516	-0.00020591	-0.00006426	0.00055014	-0.33235728	0.06398594		27	0.0000092	0.00012781	0.00056808
	28	0.00006056	-0.00020334	0.00008349	0.00052951	-0.30874587	0.14756311		28	-0.0000097	0.00012012	0.00047299
	29	0.00009713	-0.00012081	0.00000208	0.00038732	-0.26768536	0.21759102		29	-0.00000287	0.00011311	0.00040066
	30	0.00017052	-0.00011091	-0.00004636	0.00050216	-0.21508549	0.27219602		30	-0.00000480	0.00010665	0.00034512

- New files are generated as compared to BOMD relating to nonadiabatic transition:
 - > BO population, diagonal elements of density matrix (BOPOP)
 - > BO coherence, off-diagonal elements of density matrix (BOCOH)
 - Nonadiabatic coupling matrix elements (NACME)
 - Running states (SHSTATE)
 - ➤ Hopping probabilities (SHPROB).

• Single-trajectory population and molecular motion:

The C=N bond Elongation \rightarrow pyramidalization

• Without the decoherence, the dynamics suffers from the "overcoherence" problem.

- SHXF dynamics details
 - > SHXF dynamics of CNH_4^+ is run during 30 fs; dt=0.25 fs.
 - > The width of a nuclear wave packet, $\sigma = 0.07$ a.u.

$$\dot{C}_n = -\frac{i}{\hbar} E_n C_n - \sum_k \tau_{nk} C_k + \xi_n$$
$$\xi_n^{\text{SHXF}} = \sum_k \sum_{\nu} \frac{1}{M_{\nu}} \frac{\nabla_{\nu} |\chi|}{|\chi|} \Big|_{\mathbf{R}(t)} \cdot (\mathbf{f}_{k\nu} - \mathbf{f}_{n\nu}) |C_k|^2 C_n$$

J. Phys. Chem. Lett. 2018, 9, 5, 1097–1104.

• Prepare running scripts (run.py).

```
from molecule import Molecule
from thermostat import NHC
import qm, mqc
# Define the target system.
with open("geom.xyz", "r") as fp:
    geom = fp.read()
mol = Molecule(geometry=geom, nstates=3, charge=+1)
# Set QM method.
qm = qm.dftbplus.DFTB(molecule=mol, version="20.1", install_path="/user/username/_install_dftb_20.1/",
sk path="/user/username/mio-1-1/")
                                                        Change the paths accordingly!
thermo = NHC(time scale = 3.0, temperature=300.)
# Determine MD method.
md = mqc.SHXF(molecule=mol, thermostat=thermo, nsteps=120, nesteps=1000, dt=0.25, istate=2, elec_object="density",
hop rescale="energy", hop reject="keep", sigma=0.07)
```

Execute the simulation.
md.run(qm=qm)

Use an SHXF object instead of SH.

The width of a nuclear wave packet is set to be 0.07. \Rightarrow sigma=0.07

• Make MD inputs and execute them as earlier.

• TD-DFTB cannot describe S_1/S_0 CI well.

The dynamics is struggling with hopping from S_1 to S_0 .

• Investigate PES in terms of torsional-angle coordinates w/ TD-DFTB and DFTB/SSR.

• Prepare a running script (1/2).

from molecule import Molecule
import qm

install_path = "/user/username/_install_dftb_20.1/"
mio_path = "/user/username/mio-1-1/"
ob2_path = "/user/username/ob2-1-1/base/"

Change the paths accordingly!

Define the target system.

geom = "

planar CNH4

0.0.0

C	0.000	0000 0.	000000 0	.000000	0.000000	0.000000	0.000000
Ν	V 0.000	0000 0.	000000 1	.335000	0.000000	0.000000	0.000000
ŀ	H 0.943	102 0	000000 -0	.544500	0.000000	0.000000	0.000000
H	H 0.943	102 0	000000 1	.879500	0.000000	0.000000	0.000000
ŀ	-0.943	102 0	000000 1	.879500	0.000000	0.000000	0.000000
ŀ	-0.926	647 0 .	000000 -0	.535000	0.000000	0.000000	0.000000

mol = Molecule(geometry=geom, nstates=2, charge=+1)

H = H = H

A planar CNH_{A^+} structure, that is, the starting point of rotations

• Prepare a running script (2/2).

J. Chem. Theory Comput. **2019**, 15, 5, 3021–3032. Execute it. sbatch submit.sh Minimum energy conical intersection (MECI) optimized w/ DFTB/SSR CH₂NH₂⁺ tw-BLA MECI 3 methylimine MECI **TD-DFTB** 2 DFTB/SSR 1 Energy (eV) eV ~0.24 eV Û s = 3s = 0.025-1 LC-SSR LC-DFTB/ DFTB(W) TD-DFTB/ /wPBEh DFTB SSR SSR /SSR -2 Methyliminium 7.11(6.69) FC point 8.02 6.13 6.47 6.86 tw-BLA MECI 4.23 n/a n/a 5.03 3.70 -3 met MECI 4.90 (4.72)n/a n/a n/a 15 30 45 60 75 90 105 120 135 150 165 0 Angle (°)

DFTB/SSR is able to find the S_1/S_0 MECI structure.

• SH(EDC) dynamics details

 $> S_1 \rightarrow S_0$ dynamics for CNH₄⁺ are interested. We checked that DFTB/SSR gives the S₁/S₀ CI successfully.

- DFTB/SSR calculation is done to obtain E, F, NACV with ob2-1-1 Slater-Koster (SK) parameters, which is designed for range-separated DFTB calculations.
- > Nosé-Hoover Chain thermostat is employed to proceed the dynamics w/o dissociation.
- > SH(EDC) dynamics of CNH_4^+ is run during 75 fs; dt=0.25 fs.
- > Energy-based decoherence correction (EDC) can be used if you want.

• Prepare a running script.

• Make MD inputs and execute them as earlier.

• Now, the rotation during a relaxation from S1 to S0 can be captured well.

Reflection

Rotation

• $S_1 \rightarrow S_0$ transition is observed with DFTB/SSR method, but the dynamics is still lack of decoherence.

- SHXF dynamics details
 - DFTB/SSR provides with NACVs, so nuclear velocities are rescaled along the NACV corresponding to the transition.
 - > The width of a nuclear wave packet is $\sigma = 0.07$ a.u.

• Prepare a running script.

from molecule **import** Molecule **from** thermostat **import** NHC **import** qm, mqc

Define the target system.
with open("geom.xyz", "r") as fp:
 geom = fp.read()
mol = Molecule(geometry=geom, nstates=2, charge=+1)

Set QM method.

qm = qm.dftbplus.SSR(molecule=mol, tuning=[3.0, 3.0, 3.0], l_range_sep=True, l_state_interactions=True, version="20.1",
install_path="/user/username/_install_dftb_20.1/", sk_path=
"/user/username/ob2-1-1/base/")
Change the paths accordingly!

thermo = NHC(time_scale=3.0, temperature=300.)

Determine MD method.
md = mqc.SHXF(molecule=mol, thermostat=thermo, nsteps=300, nesteps=1000, dt=0.25, istate=1, elec_object="density", sigma=0.1)

Execute the simulation.
md.run(qm=qm)

• Make MD inputs and execute them as earlier.

Tutorial #5: SHXF dynamics of PSB3 with DFTB/SSR

- SHXF dynamics details
 - > S₁ \rightarrow S₀ dynamics for PSB3 are interested.
 - ➤ The scaling constants for atomic spin constants has been changed to 3.2. A proper value is different according to the systems and conical intersections in question.
 - > SHXF dynamics of PSB3 is run during 300 fs; dt=0.5 fs.
 - > The width of a nuclear wave packet is $\sigma = 0.1$ a.u.

J. Chem. Theory Comput. 2019, 15, 5, 3021-3032.

Tutorial #5: SHXF dynamics of PSB3 with DFTB/SSR

• Prepare a running script.

```
from molecule import Molecule
import qm, mqc
# Define the target system.
with open("geom.xyz", "r") as fp:
    geom = fp.read()
mol = Molecule(geometry=geom, nstates=2, charge=+1)
# Set QM method.
qm = qm.dftbplus.SSR(molecule=mol, tuning = [3.2, 3.2, 3.2], l_range_sep=True, l_state_interactions=True,
version="20.1",
install_path="/user/username/_install_dftb_20.1/", sk_path="/user/username/ob2-1-1/base/")
                                                                                           Change the paths accordingly!
# Determine MD method.
md = mqc.SHXF(molecule=mol, nsteps=600, nesteps=1000, dt=0.5, istate=1, elec object="density", sigma=0.1)
# Execute the simulation.
md.run(qm=qm)
```

- Make MD inputs and execute them.
 - \$ python input_gen.py -d /your-tut-dir/TUT1/02-dftb-BOMD-psb3/sampling -f run.py -n 200
 \$ python submit_all.py

• Population/coherence dynamics in PSB3 w/ decoherence

Excited State Phenomena Computational Chemistry Lab.