#### <u>Redfield Informal License 2022</u> Computational Chemistry Research Group at North Dakota State University

Redfield is a computational tool for first principles based dissipative quantum dynamics. This version is free of charge to registered users under the following terms and conditions:

-Each user must be registered by signing this license and sending a scanned license to North Dakota State University (NDSU) by email or other accepted means.

-All registered users of the Redfield Computational Tool have the right to use this version on a life-long basis.

-The distribution of the computational tool other than through NDSU is prohibited. Registered users should refer others to NDSU for personal registration to receive an individual license.

-The computational tool is proven to work; however, this is not a commercial version. The development process is ongoing.

-Any modifications to the computational tool created by users must be communicated to NDSU and made available for inclusion in the next version. Authors of the accepted improvements will be included in the list of developers. All authors are guaranteed lifelong free updates of the computational tool.

-All current and past co-Authors of the Development Team receive lifelong license to the Redfield software.

-Part of the input data for the quantum dynamics are computed based on the third-party software: Vienna Ab Initio Simulation Package (VASP). A license and access to this software must be obtained independently. This license does not cover any aspects of use of VASP-software. NDSU can provide recommendations on optimal use of this software or by replacing it by a free alternative software.

-Part of the computational tool package is implemented in the form of scripts under third-party MATLAB software. A license and access to this software must be obtained independently. This license does not cover any aspects of use of MATLAB-software. NDSU can provide recommendations on optimal use of this software or by replacing it by a free alternative software.

-Any publications that use the results obtained with the Redfield Computational Tool must cite one of the papers listed below, as the main value of the computational tool is in the idea and algorithm.

D. Micha, JPCL2010; S. Huang, JCTC 2014, T. Inerbaev, JPCC 2013; Y.Han, Mol. Phys 2018

https://pubs.acs.org/doi/10.1021/jz100122f https://pubs.acs.org/doi/10.1021/ct5004093 https://pubs.acs.org/doi/10.1021/jp311076w

https://www.tandfonline.com/doi/full/10.1080/00268976.2017.1416193

If needed, original papers can be co-cited with more recent reviews on updated methods, listed at the end of the license.

-Any registered user of the computational tool can be provided with codes, manuals, and an informal support line, based on availability of the development team. -A violation of any of the above conditions will revoke this license. THIS COMPUTATIONAL TOOL IS PROVIDED BY NDSU ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL NDSU BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS COMPUTATIONAL TOOL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH.

#### **Complementary info:**

1. <u>Additional references</u> Jiangchao Chen, JPCL2013, S. Jensen, JPCC 2016; Y. Han, JCTC 2017; Yulun Han, Mol Phys. 2015: J. Vogel, JPCL 2015 A.Forde, JPCC2018 A. Forde, JCTC 2021

https://pubs.acs.org/doi/10.1021/jz400760h https://pubs.acs.org/doi/10.1021/acs.jpcc.5b12167 https://pubs.acs.org/doi/10.1021/acs.jctc.7b00050 https://www.tandfonline.com/doi/full/10.1080/00268976.2014.944598 https://pubs.acs.org/doi/10.1021/acs.jpcc.5b06434 https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05392 https://pubs.acs.org/doi/10.1021/acs.jctc.1c00691?ref=PDF Alexei Akimov's Software event: CyberTraining, Nonadiabatic, and such...¶

¶

| STEP →                                        | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | SOFTWA                      | RE →          | $\rightarrow$ | EXAPLE FILES→ → → NEEDED · INPUT¶                                   |  |  |  |  |  |  |  |
|-----------------------------------------------|---------------|---------------|---------------|-----------------------------|---------------|---------------|---------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0.Optimi                                      | zation        | $\rightarrow$ | $\rightarrow$ | =·VASP                      | $\rightarrow$ | $\rightarrow$ | POSCAR → ¶                                                          |  |  |  |  |  |  |  |
| 1.int. orb                                    | oitals→       | $\rightarrow$ | $\rightarrow$ | =∙perl→                     | $\rightarrow$ | $\rightarrow$ | band_integrate_vasp5.pl¶                                            |  |  |  |  |  |  |  |
| 1.Heat <sup>.</sup>                           | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | =·VASP                      | $\rightarrow$ | $\rightarrow$ | INCAR_heat¶                                                         |  |  |  |  |  |  |  |
| 2.MD→                                         | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | =·VASP                      | $\rightarrow$ | $\rightarrow$ | $INCAR_MD \rightarrow \rightarrow \P$                               |  |  |  |  |  |  |  |
| $\rightarrow$                                 | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$               | $\rightarrow$ | $\rightarrow$ | $\rightarrow \rightarrow \rightarrow \rightarrow p001, p002, p003,$ |  |  |  |  |  |  |  |
| 3.couplir                                     | ıgs →         | $\rightarrow$ | $\rightarrow$ | = Fortrar                   | n →           | $\rightarrow$ | bscipt.sh $\rightarrow$ $\rightarrow$ $\rightarrow$ input_overlap   |  |  |  |  |  |  |  |
| $\rightarrow$                                 | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$               | $\rightarrow$ | $\rightarrow$ | Overlap.f¶                                                          |  |  |  |  |  |  |  |
| $\rightarrow$                                 | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | $\rightarrow$               | $\rightarrow$ | $\rightarrow$ | ¶                                                                   |  |  |  |  |  |  |  |
| 4.os. stre                                    | ength→        | $\rightarrow$ | $\rightarrow$ | = Fortrar                   | n →           | $\rightarrow$ | os_strength.f¶                                                      |  |  |  |  |  |  |  |
| 5.autoco                                      | rr. →         | $\rightarrow$ | $\rightarrow$ | = MATLA                     | AB →          | $\rightarrow$ | coupling.001, coupling.002, coupling.003                            |  |  |  |  |  |  |  |
| 9                                             |               |               |               |                             |               |               |                                                                     |  |  |  |  |  |  |  |
| 6.inspect                                     | listofi       | nput file     | es →          | $\rightarrow$               | $\rightarrow$ | $\rightarrow$ | RRR, bandout, energy_pop, ForMasterOptics¶                          |  |  |  |  |  |  |  |
| 7.modify                                      | input p       | aramet        | ers →         | $\rightarrow$ $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | iE, ·iH¶                                                            |  |  |  |  |  |  |  |
| 8.electronic dynamics $\rightarrow$ =·MATLAB¶ |               |               |               |                             |               |               |                                                                     |  |  |  |  |  |  |  |
| 9.analyze                                     | e relaxat     | ion rate      | es →          | $\rightarrow$               | $\rightarrow$ | Ke, Kh¶       |                                                                     |  |  |  |  |  |  |  |
| 10. analy                                     | ze charg      | ge trans      | sfer→         | $\rightarrow$ $\rightarrow$ | $\rightarrow$ | $\rightarrow$ | overlay-with-atomistic-model¶                                       |  |  |  |  |  |  |  |
| 11.analy:                                     | ze photo      | olumine       | scen          | ce →                        | $\rightarrow$ | $\rightarrow$ | watch for non-Kasha transitions ¶                                   |  |  |  |  |  |  |  |

| SUMMER2022              |                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------|
| May 31, 2022, 4:00PM    |                                                                                       |
| #1                      | Knowledge transfer session. VASP skills and Molecular Dynamics                        |
|                         | RECORDINGS: <u>https://youtu.be/8kwljXKO0mc</u>                                       |
| June 7th, 2022, 4:00pm  |                                                                                       |
| #2                      | Knowledge transfer. Nonadiabatic Couplings                                            |
|                         | RECORDINGS: https://youtu.be/P5lqMiYVZec                                              |
| June 14th, 2022, 4:00pm |                                                                                       |
| #3                      | Knowledge transfer. Averaging procedure. Convert couplings to Rates. Electron dynamic |
|                         | RECORDINGS: https://youtu.be/OTs-oRzooTA                                              |
| June 21st, 2022, 4pm    |                                                                                       |
| #4                      | Knowledge transfer. Excited state dynamics of electrons                               |
|                         | RECORDINGS: https://youtu.be/ALTrCitk-mA                                              |
| June 28th, 2022, 4pm    |                                                                                       |
| #5                      | Knowledge transfer. Observables extracted from excited state dynamics                 |
|                         | PART A: https://youtu.be/3QhDUgldhw8                                                  |
|                         | PART B: https://youtu.be/aFUuEZIo1dE                                                  |

## Integration of Electron Orbitals: 3D to 1D

Hadassah B. Griffin

**Computational Chemistry Skill Presentation** 

May 31<sup>st</sup>, 2022

#### Overview: 3D vs. 1D Visualization



(A)HOMO – 1 (B)HOMO (C)LUMO (D)LUMO + 1 (E)1D Z orbital HOMO density (F)1D Z orbital LUMO density

### Background

- Density Functional Theory (DFT): electron density
- Kohn-Sham Orbitals like "band structure" in DFT
- 3D and 1D visualization can help us see if charge transfer occur
- All calculations that followed created with VASP

# Files Prepared (PARCHG); Script to Integrate into 1D Orbitals; Output



#### Creating 3D Oribitals in NERSC



Inputs: Band orbital number start Band orbital number finish

Outputs: .z files

Another option in NERSC: band\_integrate\_vasp5.pl \*Will be used in 2-3 weeks for projects ".z" File output below; can plot .z Files in gnuplot; Columns: *position, density, normalized value for you if you want to plot on your own system* 

kilin@cori08:/global/cfs/cdirs/m1251/vasp/CHEM676 2022/hgriffin/Project/GROUND ROT/hybrid initialZS hift 2> more parch 377.z 1185.01593596539 1185.01593596539/2646002.51130121 0.18634012 830.411548848296 830.411548848296/2646002.51130121 0.37268024 592.457553228192 592.457553228192/2646002.51130121 0.55902036 440.328034187658 440.328034187658/2646002.51130121 0.74536048 339.757970483286 339.757970483286/2646002.51130121 0.9317006 265.855079098652 265.855079098652/2646002.51130121 225.959061542117 225.959061542117/2646002.51130121 1.11804072 1.30438084 204.663884369326 204.663884369326/2646002.51130121 1.49072096 181.838186221988 181.838186221988/2646002.51130121 1.67706108 171.872816168954 171.872816168954/2646002.51130121 1.8634012 171.002833831824 171.002833831824/2646002.51130121 2.04974132 164.163587880794 164.163587880794/2646002.51130121 2.23608144 168.368484024643 168.368484024643/2646002.51130121 2.42242156 187.64643546198 187.64643546198/2646002.51130121





# Kohn-Sham Orbital Electron Densities: 3D and 1D Representations, Hybrid Z-Shift 4



(A)HOMO – 1
(B)HOMO
(C)LUMO
(D)LUMO + 1
(E)1D Z orbital HOMO density
(F)1D Z orbital LUMO density

# Kohn-Sham Orbital Electron Densities: 3D and 1D Representations, Hybrid Z-Shift 2



(A)HOMO – 1
(B)HOMO
(C)LUMO
(D)LUMO + 1
(E)1D Z orbital HOMO density
(F)1D Z orbital LUMO density

## Thermal Heating and standard Molecular Dynamics

Summer 2022 knowledge transfer

Sara Tolba

#### Heat and MD Equations

$$\sum_{I=1}^{N} \frac{M_{I} \left(\frac{dR_{I}}{dt}|_{t=0}\right)^{2}}{2} = \frac{3}{2} N K_{B} T$$

where M, and  $\frac{dR_I}{dt}$  stand for the mass and initial velocity of I<sup>th</sup> nucleus, N is a number of nuclei,  $K_B$  is the Boltzmann constant, and T is the temperature. The forces F, are acting on each atom with certain velocity enter the Newton' equation of motion,

$$M_I \frac{d^2 R_I(t)}{dt^2} = F_I(t)$$

#### To do Molecular Dynamics simulation



#### Ensembles using different Thermostats

|          |               | The           | ermostat   |                   |
|----------|---------------|---------------|------------|-------------------|
| Ensemble | Andersen      | Nose-Hoover   | Langevin   | Multiple Andersen |
| NVE      | Μ             | IDALGO=1, AN  | DERSEN_PRO | <b>DB=</b> 0.0    |
|          | MDALGO=1      | MDALGO=2      | MDALGO=3   | MDALGO=13         |
|          | ISIF=2        | ISIF=2        | ISIF=2     | ISIF=2            |
| NeT      | not ovoilable | not ovoilable | MDALGO=3   | not ovoilable     |
| прі      | not available | not available | ISIF=3     | not available     |

#### General main MD INCAR tags:

**IBRION=0**: MD calculations are enabled by setting the IBRION tag to 0.

**MDALGO** specifies the molecular-dynamics-simulation protocol. *Default MDALGO=0: Standard molecular dynamics* 

**SMASS** controls the velocities during an ab-initio molecular-dynamics run.

**POTIM**: sets the time step in fs for the MD run **0.4** 

**NSW**: sets the number of ionic steps performed. **5000** 

**TEBEG**: define the desired temperature which is **300** 

# total simulation time = POTIM \* NSW (fs)

#### **INCAR-heating**

| # Type of job                                  |                                                                                                                             |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| IBRION=0                                       | #standard ab-initio MD (Verlet algorithm)                                                                                   |
| # Other Parameters                             |                                                                                                                             |
| SMASS=-1<br>NBLOCK=4<br>TEBEG=300<br>TEEND=300 | <pre>#velocities are scaled each NBLOCK step to the tempera<br/>#number of ionic steps between kinetic energy scaling</pre> |
| ISIF=2<br>LWAVE = .FALSE.<br>LCHARG = .FALSE.  | #calculate stress tensor; no change cell shape or volu                                                                      |
| # Electronic relaxa                            | tion                                                                                                                        |
| ISMEAR= 0<br>SIGMA=.35<br>ISYM = 0<br>PREC=Low | <pre>#partial occupencies of wavefunction have Gaussian sme</pre>                                                           |
| <pre># Ionic relaxation</pre>                  |                                                                                                                             |
| NSW=300                                        |                                                                                                                             |
| POTIM=.5                                       |                                                                                                                             |

TIPs:

Decreasing POTIM and increasing NSW will lead to a higher resolution result.

Use larger simulation cell to reduce the fluctuation

**SMASS**=-1 T=TEBEG+(TEEND-TEBEG)×NSTEP/NSW,

where NSTEP is the current step

#### NERSC submission script



#### Monitoring temperature

- grep "T=" OSZICAR >> TT
- gnuplot > plot 'TT' u 3 w l





Т

#### INCAR-md

| # Type of Job                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IBRION=0<br>SMASS=-3                                                    | #standard ab-initio MD (Verlet algorithm)<br>#micro canonical ensemble; total free energy conserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| # Other parameter                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TEBEG=300<br>TEEND=300<br>ISIF=2<br>LWAVE = .FALSE.<br>LCHARG = .FALSE. | <pre>#note that for MD this is an ELECTRONIC temperature<br/># this sounds strange, but it does determine the<br/>#change of occupation numbers f_i<br/># near the fermi energy<br/># for big electronic temperature<br/># occupation of HOMO is less than 2, say 1.5555<br/># occupation of LUMO is bigger than 0, say .44444<br/>#<br/># as an experiment we can try to remove these lines from the INCAR and<br/>#inspect the consequences<br/>#<br/># the actual IONIC temperature is determined by momenta of<br/>#each ion and is stored at the end of the CONTCAR file<br/># THIS is the reason for us to copypaste CONTCAR into POSCAR<br/>#calculate stress tensor; no change cell shape or volume</pre> |
| # Electronic Rela                                                       | xation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PREC=Low<br>ISMEAR= 0<br>ISYM = 0                                       | <pre>#partial occupencies of wavefunction have Gaussian smearing #symmetry not considered in calculation</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| # Ionic Relaxatio                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| POTIM=1<br>NSW=1000<br>EDIFFG=-0.0001                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Copy POTCAR, KPOINTS, CONTCAR from HEAT Job

Rename CONTCAR to POSCAR

Copy INCAR template for MD

TIP:

Set POTIM  $\leq$  0.2 for sable structure and accurate bond breaking and formation if any

**SMASS**=-3 a micro canonical ensemble (<u>NVE ensemble</u>)

### Monitoring temperature & energy

- grep "free energy" OUTCAR | awk ' {print \$5}' > energy.dat
- grep "T=" OSZICAR | awk '{print \$3}' > MD-TvsNstep.dat
- grep "Nose" OUTCAR | awk '{print \$12}' > mean-T.dat
- gnuplot > plot 'file-name' u 3 w l



#### Bands Energy Fluctuation

- perl ~/bin/state\_energy\_extractor.pl [number of orbitals below HO] [number of orbitals above LU]
- output energy\_by\_band is generated
- Gnuplot ~/bin/gnuprog\_fluctuations



#### Making Movies of MD Trajectory

On the server:

- cp ~/vtstools3/xdat2xyz.pl .
- xdat2xyz.pl
- ~/JMOL8/jmol.sh movie.xyz &

### Making Movies of MD Trajectory



| 1 😑 🔵 VMD Ma                         | in                                                                |                                                                                                                         |
|--------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| File Molecule Graphics Display       | Mouse                                                             | Extensions Help                                                                                                         |
| ID TADF Molecule                     | Atoms                                                             | Analysis  BioCoRE Data Modeling Simulation Visualization Tk Console VMD Preferences                                     |
| 😑 🕘 VMD Main                         |                                                                   | Bendix                                                                                                                  |
| File Molecule Graphics Display Mouse | Extensio                                                          | ns H Camera Navigator (Key                                                                                              |
| ID T A D F Molecule Atoms            | Analysis<br>BioCoRE<br>Data<br>Modeling<br>Simulatio<br>Visualiza | Camera Navigator (Mo<br>Clipping Plane Tool<br>Clone Representations<br>Color Scale Bar<br>Dipole Moment Watche<br>tion |
|                                      | Tk Cons                                                           | Multiple Molecule Anim                                                                                                  |

Loop step 1 > speec VMD Preference

◀ ◀ zoom □

Tk Console

PaletteTool

ViewMaster Virtual DNA Viewer

Remote Control ViewChangeRender

Ruler

3 VMD Movie Generator Renderer Movie Settings Help Format Animated GIF (ImageMagick) Set working directory: /var/folders/dv/7smj2g JPEG frames (ImageMagick) Targa frames (ImageMagick) ✓ MPEG-1 (ppmtompeg) Name of movie: untitled MPEG-1 (mencoder) MPEG-2 (mencoder) Rotation angle: 180 MPEG-1 (ffmpeg) MPEG-2 (ffmpeg) MPEG-2, NTSC DVD (ffmpeg) Trajectory step size: 1 MPEG-2, PAL DVD (ffmpeg) Change Compression Settings... Movie duration (seconds): 0 Status: Ready Stage: 0 of 0 Progress: 0 of 0 Make Movie Abort

## Thank you!

# Extracting Position Snapshots from MD Trajectories

June 7, 2022

Adam Flesche

## General Procedure

**Optimize Geometry** 

Heat System

**Molecular Dynamics** 

**Extract Position Snapshots** 

Calculate NA coupling

#### Why do we need "snapshots"?

• End goal is to find NA coupling, which is found using:

$$V_{ij}(t) = \frac{1}{\Delta t} \int d\vec{r} \,\varphi_i^{KS*}(\{\vec{R}_I(t)\}, \vec{r}) \,\varphi_j^{KS}(\{\vec{R}_I(t+\Delta t)\}, \vec{r})$$

- Knowing ionic position  $\vec{R}_I$  at each timestep  $\Delta t$  allows us to solve the above with the help of bscript.
- Ionic positions at each timestep are extracted, giving smaller POSCARformat files p000, p001, p002 ... etc.

Special thanks to Landon for the shown equation and a very helpful explanation!

### Formatting POSCAR from VASP5 to VASP4

- Make sure you have your MD trajectory job completed, enter its directory.
- First make a new directory for your snapshots so we don't make a mess, and copy everything from your MD directory to snapshots.
- Edit the POSCAR in snapshots, remove the 6<sup>th</sup> line of the file completely, and save.
- Now you are ready to grab positions!

| kilin@co                                                                                                                                                                                                                                                                     | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6_2022/ | adam/PR0. | JECT/FERWE | E_GROUND/G | ROUND_C | OPT/HEAT310K/ | testMD310K> | ≻ ls         |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------------|------------|---------|-----------|------------|------------|---------|---------------|-------------|--------------|--------------|
| CHG                                                                                                                                                                                                                                                                          | CONTCAR  | EIGENVAL   | INCAR        | KPOINTS    | OUTCAR  | POSCAR    | REPORT     | XDATCAR    | slurm-  | -59751072.out | slurm-598   | 390378.out   |              |
| CHGCAR                                                                                                                                                                                                                                                                       | DOSCAR   | IBZKPT     | INCAR-heat   | OSZICAR    | PCDAT   | POTCAR    | WAVECAR    | debug.sh   | slurm-  | -59890333.out | vasprun.x   | anl          |              |
| kilin@co                                                                                                                                                                                                                                                                     | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6 2022/ | adam/PR0. | JECT/FERWE | E GROUND/G | ROUND ( | OPT/HEAT310K/ | testMD310K> | • mkdir snap | pshots310K   |
| <ilin@co< td=""><td>ri05:/gl</td><td>obal/cfs/c</td><td>dirs/m1251/v</td><td>asp/CHEM67</td><td>6_2022/</td><td>adam/PR0.</td><td>JECT/FERWE</td><td>GR0UND∕G</td><td>ROUND</td><td>OPT/HEAT310K/</td><td>testMD310K&gt;</td><td>cd snapsh</td><td>ots310K/</td></ilin@co<>  | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6_2022/ | adam/PR0. | JECT/FERWE | GR0UND∕G   | ROUND   | OPT/HEAT310K/ | testMD310K> | cd snapsh    | ots310K/     |
| <ilin@co< td=""><td>ri05:/gl</td><td>obal/cfs/c</td><td>dirs/m1251/v</td><td>asp/CHEM67</td><td>6 2022/</td><td>adam/PR0</td><td>JECT/FERWE</td><td>GROUND/G</td><td>ROUND</td><td>OPT/HEAT310K/</td><td>testMD310K/</td><td>snapshots3</td><td>10K&gt; ср/*</td></ilin@co<> | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6 2022/ | adam/PR0  | JECT/FERWE | GROUND/G   | ROUND   | OPT/HEAT310K/ | testMD310K/ | snapshots3   | 10K> ср/*    |
| cp: -r n                                                                                                                                                                                                                                                                     | ot speci | fied; omit | ting directo | ry '/sna   | pshots3 | 10K'      |            | _          | _       |               |             |              |              |
| √ilin@co                                                                                                                                                                                                                                                                     | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6 2022/ | adam/PR0. | JECT/FERWE | E GROUND/G | ROUND ( | OPT/HEAT310K/ | testMD310K/ | snapshots3   | 10K> vi POSC |
| <ilin@co< td=""><td>ri05:/gl</td><td>obal/cfs/c</td><td>dirs/m1251/v</td><td>asp/CHEM67</td><td>6 2022/</td><td>adam/PR0</td><td>JECT/FERWE</td><td>GROUND/G</td><td>ROUND</td><td>OPT/HEAT310K/</td><td>testMD310K/</td><td>snapshots3</td><td>10K&gt;</td></ilin@co<>      | ri05:/gl | obal/cfs/c | dirs/m1251/v | asp/CHEM67 | 6 2022/ | adam/PR0  | JECT/FERWE | GROUND/G   | ROUND   | OPT/HEAT310K/ | testMD310K/ | snapshots3   | 10K>         |
| -                                                                                                                                                                                                                                                                            |          |            |              | 1.1        | _ `     |           |            | _          | _       |               |             | •            |              |

| G H N Zn                                |                                         |                                         |          |          |          |  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------|----------|----------|--|--|--|--|--|--|
| 1.000000000000000                       |                                         |                                         |          |          |          |  |  |  |  |  |  |
| 50.06109999999999                       | 62 0.000000000000                       | 0.00000000000000 0.00000000000000000000 |          |          |          |  |  |  |  |  |  |
| 0.000000000000000                       | 00 26.077370000000                      | 26.077370000000019 0.0000000000000000   |          |          |          |  |  |  |  |  |  |
| 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 | 0000 26.14041 <u>99999</u>              | 99998    | 9        |          |  |  |  |  |  |  |
| C H N Zn                                |                                         |                                         |          |          |          |  |  |  |  |  |  |
| 114 124 δ                               | 1                                       |                                         |          |          |          |  |  |  |  |  |  |
| Selective dynamics                      |                                         |                                         |          |          |          |  |  |  |  |  |  |
| Direct                                  |                                         |                                         |          |          |          |  |  |  |  |  |  |
| 0.6057674739380254                      | 0.5707116855134748                      | 0.7161917631649307                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6049729272247926                      | 0.5230921904095003                      | 0.7957288323569973                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6112891436236891                      | 0.6603528215211760                      | 0.7960812534484271                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6194875381483590                      | 0.5510590236912835                      | 0.7589880842750089                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6345401968049980                      | 0.4442146877999683                      | 0.7243851923126420                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6407935419065443                      | 0.6566019371992120                      | 0.7873516940051689                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6486058263307962                      | 0.5603454834306398                      | 0.7652569974436011                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6470976794516674                      | 0.7828459140894721                      | 0.7508014614528263                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6566214888256779                      | 0.6111443714361677                      | 0.7764348029958701                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6520013738394295                      | 0.7527482575938519                      | 0.8005358390037188                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6602654314286337                      | 0.4657044140557763                      | 0.7443502857484393                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6584796658476774                      | 0.6975803797116581                      | 0.7908632155054002                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6668279975275966                      | 0.5189409821456120                      | 0.7591860107065087                      | т        | Т        | Т        |  |  |  |  |  |  |
| 0.6836780753015158                      | 0.4384794011716488                      | 0.7496266147700128                      | т        | Т        | Т        |  |  |  |  |  |  |
|                                         |                                         |                                         |          |          |          |  |  |  |  |  |  |
| CHNZn                                   |                                         |                                         |          |          |          |  |  |  |  |  |  |
| 1 000000000000000                       |                                         |                                         |          |          |          |  |  |  |  |  |  |
|                                         |                                         |                                         | 00000    | ຈດ       |          |  |  |  |  |  |  |
| 0.00109999999999999999                  |                                         |                                         | 00000    | ม<br>ม   |          |  |  |  |  |  |  |
| 0.0000000000000000000000000000000000000 |                                         |                                         | 00000    |          |          |  |  |  |  |  |  |
|                                         | 1                                       | 20.1404199999                           | 199999   |          |          |  |  |  |  |  |  |
| Soloctivo dupamico                      | 1                                       |                                         |          |          |          |  |  |  |  |  |  |
|                                         |                                         |                                         |          |          |          |  |  |  |  |  |  |
|                                         | 0 5707116955124749                      | 0 7161017631640307                      | т        | т        | т        |  |  |  |  |  |  |
| 0.0007074759500234                      | 0.5707110655154746                      | 0.7101917051049507                      | 1<br>- T |          | - T      |  |  |  |  |  |  |
| 0.6449729272247920                      | 0.5250921904095005                      | 0.7957200525509975                      | 1<br>- T | - T      | 1<br>- T |  |  |  |  |  |  |
| 0.0112891430230891                      | 0.0003528215211700                      | 0.7900812534484271                      | <u>+</u> | <u>+</u> |          |  |  |  |  |  |  |
| 0.6194875381483590                      | 0.5510590236912835                      | 0.7589880842750089                      |          |          |          |  |  |  |  |  |  |
| 0.6345401968049980                      | 0.4442146877999683                      | 0.7243851923126420                      | <u> </u> | <u> </u> | <u> </u> |  |  |  |  |  |  |
| 0.640/935419065443                      | 0.6566019371992120                      | 0.7873516940051689                      | <u> </u> | <u> </u> | <u> </u> |  |  |  |  |  |  |
| 0.6486058263307962                      | 0.5603454834306398                      | 0.7652569974436011                      | <u> </u> | T        | T        |  |  |  |  |  |  |
| 0.6470976794516674                      | 0.7828459140894721                      | 0.7508014614528263                      | Т        | T        | Т        |  |  |  |  |  |  |
| 0.6566214888256779                      | 0.6111443714361677                      | 0.7764348029958701                      | Т        | Т        | T        |  |  |  |  |  |  |
| 0.6520013738394295                      | 0.7527482575938519                      | 0.8005358390037188                      | Т        | Т        | T        |  |  |  |  |  |  |
| 0.6602654314286337                      | 0.4657044140557763                      | 0.7443502857484393                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6584796658476774                      | 0.6975803797116581                      | 0.7908632155054002                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0.6668279975275966                      | 0.5189409821456120                      | 0.7591860107065087                      | Т        | Т        | Т        |  |  |  |  |  |  |
| 0 6026700752015150                      | 0 1201701011716100                      | 0 7406266147700120                      | т        | т        | т        |  |  |  |  |  |  |

#### Grabbing Positions from POSCAR

- Make sure there are no other files that start with "p" in your snapshot directory: > rm p\*
- Run script: > ~/bin/outcar2poscar.pl
- After it finishes running, you can see the individually generated POSCAR files with: > Is p\*
- These can now be used in finding NA coupling!

Next steps: finding WAVECAR at each timestep and extract NA couplings using bscript!

| p000  | p062      | p1021 | p1078 | p140  | p202 | p264 | p326  | p388  | p450 | p512  | p574  | p636  | p698 | p760 | p822  | p884   | p946  |
|-------|-----------|-------|-------|-------|------|------|-------|-------|------|-------|-------|-------|------|------|-------|--------|-------|
| b001  | p063      | p1022 | p1079 | p141  | p203 | p265 | p327  | p389  | p451 | p513  | p575  | p637  | p699 | p761 | p823  | p885   | p947  |
| n002  | n064      | n1023 | n108  | n142  | n204 | n266 | n328  | n 390 | n452 | n514  | n576  | n638  | n700 | n762 | n824  | n886   | n948  |
| 0002  | 0.065     | p1020 | p1000 | 01/12 | 0205 | 267  | n 220 | n 201 | 0/52 | 515   | 577   | n620  | 0701 | p762 | 0024  | 0007   | n040  |
| p003  | p005      | p1024 | p1000 | P145  | -200 | -207 | p323  | h202  | p455 | p515  | -570  | p035  | -702 | p703 | -020  | -000   | p 949 |
| p004  | p066      | p1025 | p1081 | p144  | p206 | p268 | p330  | p392  | p454 | p516  | p5/8  | p640  | p702 | p764 | p826  | p888   | p920  |
| p005  | p067      | p1026 | p1082 | p145  | p207 | p269 | p331  | p393  | p455 | p517  | p579  | p641  | p703 | p765 | p827  | p889   | p951  |
| p006  | p068      | p1027 | p1083 | p146  | p208 | p270 | p332  | p394  | p456 | p518  | p580  | p642  | p704 | p766 | p828  | p890   | p952  |
| p007  | p069      | p1028 | p1084 | p147  | p209 | p271 | p333  | p395  | p457 | p519  | p581  | p643  | p705 | p767 | p829  | p891   | p953  |
| n008  | n070      | n1029 | n1085 | n148  | n210 | n272 | n334  | n396  | n458 | n520  | n582  | n644  | n706 | n768 | n830  | n892   | n954  |
| 000   | n071      | n103  | n1086 | n149  | n211 | n273 | n335  | n 397 | n459 | n521  | n583  | n645  | n707 | n769 | n831  | n893   | n955  |
| 0010  | n072      | n1020 | n1097 | n150  | n212 | n274 | n226  | n 200 | p460 | n522  | n594  | n646  | n709 | n770 | n022  | n904   | n056  |
| 0010  | p072      | p1030 | p1007 | p150  | p212 | p274 | p330  | h2200 | p400 | p522  | p504  | p040  | p700 | p770 | p032  | p054   | p 950 |
| p011  | p073      | p1031 | p1088 | p151  | p213 | p275 | p337  | b388  | p401 | p523  | p282  | p647  | p709 | p//1 | p833  | h882   | pa21  |
| p012  | p0/4      | p1032 | p1089 | p152  | p214 | p276 | p338  | p400  | p462 | p524  | p586  | p648  | p/10 | p//2 | p834  | p896   | p958  |
| p013  | p075      | p1033 | p109  | p153  | p215 | p277 | p339  | p401  | p463 | p525  | p587  | p649  | p711 | p773 | p835  | p897   | p959  |
| p014  | p076      | p1034 | p1090 | p154  | p216 | p278 | p340  | p402  | p464 | p526  | p588  | p650  | p712 | p774 | p836  | p898   | p960  |
| p015  | p077      | p1035 | p1091 | p155  | p217 | p279 | p341  | p403  | p465 | p527  | p589  | p651  | p713 | p775 | p837  | p899   | p961  |
| n016  | n078      | n1036 | n1092 | n156  | n218 | n280 | n342  | n404  | n466 | n528  | n590  | n652  | n714 | n776 | n838  | n900   | n962  |
| n017  | n070      | n1037 | n1003 | n157  | n210 | n281 | n3/13 | n/105 | n/67 | n520  | n501  | n653  | n715 | n777 | n830  | nQ01   | n062  |
| 0010  | 0000      | n1039 | p1000 | n150  | n220 | 201  | 0244  | p400  | 0460 | n520  | n502  | p654  | 0716 | 0770 | p0000 | p002   | p064  |
| p010  | p000      | p1030 | p1094 | P100  | -224 | -202 | - 24F | p400  | p400 | p330  | -502  | P004  | p710 | -770 | p040  | p 502  | p 904 |
| p019  | p081      | p1039 | b1092 | p159  | p221 | p283 | p345  | p407  | p469 | p531  | p293  | poss  | p/1/ | p779 | p841  | p903   | pap2  |
| p020  | p082      | p104  | p1096 | p160  | p222 | p284 | p346  | p408  | p470 | p532  | p594  | p656  | p/18 | p780 | p842  | p904   | p966  |
| p021  | p083      | p1040 | p1097 | p161  | p223 | p285 | p347  | p409  | p471 | p533  | p595  | p657  | p719 | p781 | p843  | p905   | p967  |
| p022  | p084      | p1041 | p1098 | p162  | p224 | p286 | p348  | p410  | p472 | p534  | p596  | p658  | p720 | p782 | p844  | p906   | p968  |
| 0023  | p085      | p1042 | p1099 | p163  | p225 | p287 | p349  | p411  | p473 | p535  | p597  | p659  | p721 | p783 | p845  | p907   | p969  |
| n024  | n086      | n1043 | n110  | n164  | n226 | n288 | n350  | n412  | n474 | n536  | n598  | n660  | n722 | n784 | n846  | n908   | n970  |
| 0025  | n087      | n1044 | n1100 | n165  | n227 | n289 | n351  | n413  | n475 | n537  | n599  | n661  | n723 | n785 | n847  | n909   | n971  |
| 026   | 0000      | 01045 | p1100 | n166  | 0220 | 200  | 0252  | p410  | 0476 | 0500  | p600  | nee2  | 0724 | p706 | 0040  | p010   | 072   |
| p020  | h000      | p1045 | p1101 | p100  | p220 | p290 | p352  | p414  | p470 | p350  | p000  | p002  | p724 | p700 | p040  | haro   | p972  |
| p027  | p089      | p1040 | p1102 | p167  | p229 | p291 | p353  | p415  | p477 | p539  | po01  | p663  | p725 | p/8/ | p849  | p911   | p973  |
| p028  | p090      | p1047 | p1103 | p168  | p230 | p292 | p354  | p416  | p4/8 | p540  | p602  | p664  | p/26 | p788 | p850  | p912   | p974  |
| p029  | p091      | p1048 | p1104 | p169  | p231 | p293 | p355  | p417  | p479 | p541  | p603  | p665  | p727 | p789 | p851  | p913   | p975  |
| p030  | p092      | p1049 | p1105 | p170  | p232 | p294 | p356  | p418  | p480 | p542  | p604  | p666  | p728 | p790 | p852  | p914   | p976  |
| 0031  | p093      | p105  | p1106 | 0171  | p233 | p295 | p357  | p419  | p481 | p543  | p605  | p667  | p729 | p791 | p853  | p915   | p977  |
| 0.032 | n094      | n1050 | n1107 | n172  | n234 | n296 | 0358  | n420  | n482 | n544  | n606  | 0668  | n730 | n792 | n854  | n916   | n978  |
| 0033  | n005      | n1051 | n111  | n173  | n225 | n207 | n350  | n/121 | n/83 | n5/15 | n607  | n660  | n731 | n702 | n855  | n017   | n070  |
| 0000  | p0000     | p1051 | p112  | p174  | p200 | p200 | p355  | p421  | p403 | p545  | p6007 | p6003 | 0732 | 0704 | 0056  | p010   | p000  |
| p034  | h090      | p1052 | p112  | p1/4  | p250 | h530 | h200  | p422  | P404 | p340  | h000  | p070  | p752 | p794 | h020  | haro   | haoo  |
| p032  | p097      | p1053 | p113  | p1/5  | p237 | p299 | p361  | p423  | p485 | p547  | p609  | p6/1  | p733 | p795 | p827  | p919   | p981  |
| p036  | p098      | p1054 | p114  | p1/6  | p238 | p300 | p362  | p424  | p486 | p548  | p610  | p6/2  | p734 | p796 | p858  | p920   | p982  |
| p037  | p099      | p1055 | p115  | p177  | p239 | p301 | p363  | p425  | p487 | p549  | p611  | p673  | p735 | p797 | p859  | p921   | p983  |
| p038  | p100      | p1056 | p116  | p178  | p240 | p302 | p364  | p426  | p488 | p550  | p612  | p674  | p736 | p798 | p860  | p922   | p984  |
| 0039  | p1000     | p1057 | p117  | p179  | p241 | p303 | p365  | p427  | p489 | p551  | p613  | p675  | p737 | p799 | p861  | p923   | p985  |
| n040  | n1001     | n1058 | n118  | n180  | n242 | n304 | n366  | n428  | n490 | n552  | n614  | n676  | n738 | n800 | n862  | n924   | n986  |
| n041  | n1002     | n1059 | n119  | n181  | n243 | n305 | n367  | n429  | n491 | n553  | n615  | n677  | n739 | n801 | n863  | n925   | n987  |
| 0042  | n1002     | n106  | n120  | n102  | n244 | n206 | 200   | n/20  | p401 | n554  | n616  | n670  | n740 | n002 | n964  | n026   | 0000  |
| p042  | p1003     | p100  | p120  | p102  | p244 | p300 | p300  | p430  | p492 | p334  | p010  | p070  | p740 | p002 | p004  | p 920  | h900  |
| p043  | p1004     | h1000 | p121  | h192  | p245 | p307 | h30a  | p431  | p493 | hooo  | hory  | h01a  | p741 | p803 | p802  | p927   | hasa  |
| p044  | p1005     | p1061 | p122  | p184  | p246 | p308 | b3\0  | p432  | p494 | p556  | p618  | p680  | p742 | p804 | p866  | p928   | p990  |
| p045  | p1006     | p1062 | p123  | p185  | p247 | p309 | p371  | p433  | p495 | p557  | p619  | p681  | p743 | p805 | p867  | p929   | p991  |
| p046  | p1007     | p1063 | p124  | p186  | p248 | p310 | p372  | p434  | p496 | p558  | p620  | p682  | p744 | p806 | p868  | p930   | p992  |
| p047  | p1008     | p1064 | p125  | p187  | p249 | p311 | p373  | p435  | p497 | p559  | p621  | p683  | p745 | p807 | p869  | p931   | p993  |
| n048  | n1009     | n1065 | n126  | n188  | n250 | n312 | n374  | n436  | n498 | n560  | n622  | n684  | n746 | n808 | n870  | n932   | n994  |
| 0.040 | n101      | n1066 | n127  | n189  | n251 | n313 | n375  | n437  | n499 | n561  | n623  | n685  | n747 | n809 | n871  | n933   | n995  |
| 0050  | n1010     | n1067 | n128  | n100  | n252 | n314 | n376  | n/139 | n500 | n562  | n624  | n686  | n749 | n810 | n872  | n034   | n006  |
| 0050  | p1010     | p100/ | p120  | p150  | p252 | p314 | 277   | p430  | p500 | p502  | p024  | 0000  | 0740 | 0010 | 2072  | 0005   | 2007  |
| p051  | p1011     | p1008 | p129  | p191  | p253 | p315 | p377  | p439  | p501 | p203  | po25  | p687  | p749 | p811 | p873  | p932   | baay  |
| p052  | p1012     | p1069 | p130  | p192  | p254 | p316 | p378  | p440  | p502 | p564  | p626  | p688  | p750 | p812 | p874  | p936   | b998  |
| p053  | p1013     | p107  | p131  | p193  | p255 | p317 | p379  | p441  | p503 | p565  | p627  | p689  | p751 | p813 | p875  | p937   | p999  |
| p054  | p1014     | p1070 | p132  | p194  | p256 | p318 | p380  | p442  | p504 | p566  | p628  | p690  | p752 | p814 | p876  | p938   |       |
| p055  | p1015     | p1071 | p133  | p195  | p257 | p319 | p381  | p443  | p505 | p567  | p629  | p691  | p753 | p815 | p877  | p939   |       |
| p056  | p1016     | p1072 | p134  | p196  | p258 | p320 | p382  | p444  | p506 | p568  | p630  | p692  | p754 | p816 | p878  | p940   |       |
| 0.057 | n1017     | n1073 | n135  | n197  | n259 | n321 | n383  | n445  | n507 | n569  | n631  | n693  | n755 | n817 | n879  | n941   |       |
|       | 1 1 1 1 1 | 12010 | 1000  | 0.001 | 1000 | Port | 1000  | 1110  | 1001 | 1000  | Poor  | 0000  | 0.00 | 1020 | 1010  | 0.0.17 |       |

# Questions?
## Setting Up bscript to Create Multiple Launches From One Script

Adapted for the Example of Creating Nonadiabatic Coupling Without Spin Data Based on Molecular Dynamic Trajectory Data

Hadassah B. Griffin

Computational Chemistry Skills Summer 2022

Overview



Nonadiabatic Spin Coupling: Completed Calculations Required

- Assumed calculations completed and files ready:
  - Molecular dynamic (MD) trajectory has been calculated
    - WAVECAR
    - XDATCAR
    - POSCAR (Needs to be in VASP 4 Format)
    - POTCAR (very important to have, especially if you choose do this work in a different directory)
  - Oscillator Strength Calculations
    - input\_overlap
    - energy\_pop
      - Use "perl ~/bin/state\_energy\_extractor.pl" to create

#### Doing the VASP 4 POSCAR Modification

#### • VASP 5

#### • VASP 4

| _2/nonadiabaticNoSpinCoupling> head/nvt_thermostat/POSCAR      | _2/nonadiabaticNoSpinCoupling> head POSCAR                     |
|----------------------------------------------------------------|----------------------------------------------------------------|
| CD Pb Se                                                       | CD Pb Se                                                       |
| 1.000000000000                                                 | 1.000000000000000                                              |
| 17.2883522845873010 0.00000000000000 0.0000000000000000        | 17.2883522845873010 0.00000000000000 0.0000000000000000        |
| 0.00000000000000 18.6227501583016100 0.0000000000000000        | 0.00000000000000 18.6227501583016100 0.0000000000000000        |
| 0.000000000000 0.0000000000000 27.9510180275233502             | 0.00000000000000 0.00000000000000 27.9510180275233502          |
| Cd Pb Se                                                       | 33 16 49                                                       |
|                                                                | Selective dynamics                                             |
| Selective dynamics                                             | Direct                                                         |
| Direct                                                         | 0.4675517867140083 0.1820477626119422 0.2367731291033196 T T T |
| 0.4545916843303247 0.1993545839935950 0.2439944378655387 T T T | 0.4666957190126812 0.5773121536083853 0.1518416966359082 T T T |

Remove this line from POSCAR to get it into VASP 4 format

-Do this BEFORE generating position snapshots

### Creating the Trajectory/Position Snapshots (1)

- Multiple files available; use "perl" command to run
  - perl /global/common/cori\_cle7up03/software/vasp/vtstscripts /3.1/xdat2pos.pl 0 t1 t2
    - Inputs: time stamp start, step, end
    - Outputs: POSCAR#.out
    - Note: default bscript would have to be modified for the different position file name, but I have not tested this for myself
    - Useful to see if position data extractable

#### Creating the Trajectory/Position Snapshots (2)

perl ~/bin/outcar2poscar.pl (used in this presentation)

- Outputs: p000 ~ p999 in trajectory
- Note: POSCAR must be in VASP 4 format prior to calculation

| kilin | @cori0 | 3:/qlo | bal/cf | s/cdir | s/m125 | 1/vasp | /CHEM6 | 76 202 | 2/hqri | ffin/s | um22 p | roject | /hybri | d init | ial ZShif |  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|--|
| _2/no | nadiab | aticNo | SpinCo | upling | ≻ls p  | *      |        | _      |        |        |        | -      |        | _      |           |  |
| p000  | p063   | p132   | p195   | p258   | p321   | p384   | p447   | p510   | p573   | p636   | p699   | p762   | p825   | p888   | p951      |  |
| p001  | p064   | p133   | p196   | p259   | p322   | p385   | p448   | p511   | p574   | p637   | p700   | p763   | p826   | p889   | p952      |  |
| p002  | p065   | p134   | p197   | p260   | p323   | p386   | p449   | p512   | p575   | p638   | p701   | p764   | p827   | p890   | p953      |  |
| p003  | p066   | p135   | p198   | p261   | p324   | p387   | p450   | p513   | p576   | p639   | p702   | p765   | p828   | p891   | p954      |  |
| p004  | p067   | p136   | p199   | p262   | p325   | p388   | p451   | p514   | p577   | p640   | p703   | p766   | p829   | p892   | p955      |  |
| p005  | p068   | p137   | p200   | p263   | p326   | p389   | p452   | p515   | p578   | p641   | p704   | p767   | p830   | p893   | p956      |  |

# Copy Templates Relevant for Coupling Calculations

- Nonadiabatic Couplings Without Spin Files
  - Get INCAR template:
    - cp ~/bin/INCAR/INCAR\_for\_coupling
  - Copy these files from: "~/bin/COUPLINGS/NOSPIN/"
    - cori-coupling.sh
    - osc\_str.exe
    - bscipt.sh
    - extract\_energy\_pop.exe
    - osc\_str\_overlap.exe

# Modify cori-coupling.sh As Needed (Default shown below)

2> more ~/bin/COUPLINGS/NOSPIN/cori-coupling.sh #!/bin/bash -l #SBATCH -q regular #SBATCH -N 1 #SBATCH -t 48:00:00 #SBATCH -L SCRATCH #SBATCH -J silll #SBATCH -J silll #SBATCH -C knl #module load PrgEnv\_gnu/6\_0.5 module load vasp/5.4.4-knl #check vasp excutable

./bscipt.sh #generate couplings

Note: optional to comment out (#) specifics of VASP executable, since it updates occasionally

#### Modify bsipt.sh

\_2/nonadiabaticNoSpinCoupling> more bscipt.sh

cp p105 POSCAR

cp OUTCAR OUTCARinitial ./extract\_energy\_pop.exe ./osc\_str.exe rm energy pop

for((i=106;\$i<=999;i=\$((\$i+1))));

do j=\$(printf "%.3d" "\$i") echo p\$j cp WAVECAR WAVECAROLD cp p\$j POSCAR srun -n 256 vasp std cp OUTCAR OUTCAR\$j ./extract energy\_pop.exe ./osc\_str\_overlap.exe mv OS STRENGTH os.\$1 mv forMasterEq forMasterEq.\$j gzip forMasterEq.\$j mv coupling coupling.\$j gzip coupling.\$j gzip OS STRENGTH os.\$j mv billdata billdata.\$j gzip billdata.\$j rm energy\_pop done

Advisory: if your program encounters errors in midcalculation, your energy\_pop will be deleted before a new one is created. Have a copy elsewhere.

Change "prior position step" name

Change to range of position data. This example would look at p106 -> p999.

#### Output of bscipt Calculation

- After "sbatch cori-coupling.sh"...
- Intermediate calculation data files (OUTCAR###, billdata.###.gz, forMasterEq.###, etc)
- Compressed .gz Matlab files with Coupling Data
- Transfer coupling.###.gz files to personal system (not NERSC) for analysis (use WinSCP, scp command, etc.)

```
_2/nonadiabaticNoSpinCoupling> ls -lt coup*
-rw-rw---- 1 kilin m1251 32357 Jun 6 18:08 coupling.105.gz
-rw-rw---- 1 kilin m1251 32377 Jun 6 18:01 coupling.104.gz
-rw-rw---- 1 kilin m1251 32533 Jun 6 17:54 coupling.103.gz
-rw-rw---- 1 kilin m1251 32557 Jun 6 17:47 coupling.102.gz
-rw-rw---- 1 kilin m1251 32566 Jun 6 17:40 coupling.101.gz
```

#### Extracting .gz Data

- Use Matlab on personal computer
- If not installed, available to NDSU students. Install instructions: <a href="https://kb.ndsu.edu/page.php?id=102044">https://kb.ndsu.edu/page.php?id=102044</a>
- Matlab commands to extract files: <u>https://www.mathworks.com/help/matlab/ref/gunzip.html</u>

#### .gz Data Extracted Example

| File | e Edit Format View Help |                                        |                                        |                         |                     |        |                  |          |   |
|------|-------------------------|----------------------------------------|----------------------------------------|-------------------------|---------------------|--------|------------------|----------|---|
| . '  | -0.0000000000000000E+00 | 0.1211389995124899E-03                 | -0.6197786083137757E-02                | -0.1541268113405541E-03 | -0.466597065792890  | 3E-03  | -0.7284804391835 | 226E-06  | _ |
| þ    | -0.3/12556368651512E-03 | 0.4630682634980034E-03                 | 0.15/6053499/58531E-02                 | 0.2686240203408773E-03  | -0.281/56200359385  | 9E-05  | 0.106911/804/9   | 3182E-0: | 3 |
| _ `  | -0.1211389995124962E-03 | -0.00000000000000000000000000000000000 | -0.1942889889451166E-02                | -0.293461996/66010/E-04 | -0.344996159423236  | /E-03  | -0.5/20943450691 | 436E-04  | _ |
|      | 0.1409516499782699E-02  | -0.1/2003690/262898E-02                | 0.365488/808048/20E-03                 | -0.4391203553994685E-03 | -0.14052/54/99905:  | 37E-04 | -0.26362306/009  | 2/30E-0: | 3 |
|      | 0.619//8608313///1E-02  | 0.1942889889451183E-02                 | -0.00000000000000000000000000000000000 | -0.//6466/0//4515/2E-02 | -0.941834//48/95//9 | 9E-02  | -0.3641/69608860 | 65/E-02  | _ |
| 3    | 0./1/21/3383/69450E-05  | 0.1588846601055998E-04                 | -0./4028068848/6052E-04                | -0.18390/6/44/84260E-03 | 0.14062543619161    | (4E-03 | -0.1595/6954565  | 3356E-02 | 2 |
| _    | 0.1541268113405569E-03  | 0.2934619967659536E-04                 | 0.7764667077451625E-02                 | -0.000000000000000E+00  | -0.5442068688634976 | 9E-04  | -0.7399482143182 | 013E-05  | _ |
| •    | 0.8147527446915128E-04  | -0.1279817206778083E-02                | -0.2147470034128239E-02                | 0.3756503423469096E-04  | -0.635191984501119  | 92E-05 | 0.117086167166   | 6793E-0: | 3 |
|      | 0.4665970657928879E-03  | 0.3449961594232396E-03                 | 0.9418347748795812E-02                 | 0.5442068688635083E-04  | -0.000000000000000  | 9E+00  | -0.1082556954166 | 193E-03  |   |
| 4    | 0.3155030115476390E-03  | 0.4742545116766383E-03                 | -0.3953234509227207E-03                | 0.6585269071154072E-03  | -0.105128656358125  | 57E-04 | -0.959336824206  | 4691E-04 | 4 |
|      | 0.7284804391805252E-06  | 0.5720943450690465E-04                 | 0.3641769608860670E-02                 | 0.7399482143181728E-05  | 0.1082556954166220  | 0E-03  | -0.0000000000000 | 000E+00  |   |
| 5    | -0.7789382572264318E-04 | -0.4918035795713477E-04                | 0.8358939398922751E-03                 | 0.4946173463725304E-03  | 0.178969747161791   | L7E-04 | 0.576482014303   | 1575E-04 | 4 |
|      | 0.1140873991442991E-02  | 0.1432305801718290E-02                 | 0.1172223214949838E-02                 | -0.1836694093142026E-04 | 0.4625082604997933  | 3E-02  | -0.3203474393597 | 199E-02  |   |
| 3    | -0.4937913311601177E-03 | -0.2047925846833034E-03                | 0.4841258794915996E-04                 | 0.2448004520155315E-04  | 0.953802816148318   | 31E-03 | -0.817997075712  | 9417E-03 | 3 |
|      | -0.7351337966062313E-03 | 0.2755885778417386E-02                 | 0.2010363014286351E-04                 | 0.8302554893948310E-02  | -0.7796306674612566 | 5E-03  | 0.5018208250160  | 646E-02  |   |
| 3    | 0.4066768918310286E-04  | 0.4983203543263708E-04                 | 0.1427379850213297E-05                 | -0.1338241433340649E-03 | -0.643256653260614  | 13E-03 | 0.939010444574   | 9310E-04 | 4 |
|      | 0.3464381375877070E-02  | 0.2094393903502979E-02                 | -0.2674171380057323E-04                | -0.1866487823164306E-02 | -0.2774545831173212 | 2E-02  | -0.3707383767785 | 820E-02  |   |
| 4    | -0.9287501015799861E-05 | -0.1808451408814952E-04                | 0.4249251971306221E-05                 | -0.2164251603272381E-03 | 0.408297206791122   | 26E-03 | -0.162376590329  | 5071E-03 | 3 |
|      | 0.5884735406687424E-04  | 0.2009563250585614E-04                 | -0.4568929786453768E-03                | 0.3119493542676671E-04  | 0.1636378276699923  | 3E-03  | 0.1413856780440  | 620E-03  |   |
| 5    | -0.4154947995917303E-03 | -0.1583683773587770E-02                | 0.1516073602411404E-03                 | 0.6382657444088657E-03  | 0.455227003960529   | 95E-04 | 0.140808371859   | 3092E-03 | 3 |
|      | 0.2318038117841902E-04  | -0.3032236516115918E-04                | -0.5381126147706148E-03                | 0.1111079409617846E-04  | -0.5225615371857403 | 3E-03  | -0.3639274561958 | 678E-03  |   |
| 5    | -0.4989412914218860E-04 | -0.4056034644302328E-03                | -0.1236727195024489E-02                | 0.1210981091431362E-03  | -0.807165355995148  | 30E-04 | -0.162631818584  | 6360E-03 | 3 |
|      | 0.1238029790038439E-02  | -0.1356933237974979E-02                | -0.2880162650038234E-05                | -0.3096782893248831E-02 | 0.1923980010761557  | 7E-03  | 0.6348920088952  | 949E-03  |   |
| 3    | -0.2509575199191379E-03 | -0.2937270255068735E-04                | 0.5721382245375038E-04                 | 0.1067661794551621E-03  | 0.173771779117946   | 54E-02 | 0.542594085285   | 7329E-03 | 3 |
|      | 0.1163297737875148E-02  | -0.9187530084712909E-03                | 0.2730810398346340E-03                 | -0.4850194504941107E-02 | -0.6021359794605949 | 9E-03  | -0.1044154753788 | 815E-02  |   |
| 3    | -0.6757781068721203E-05 | 0.5815755118486926E-04                 | 0.9004034695129296E-05                 | -0.1375061256461829E-03 | 0.218677725469716   | 55E-03 | -0.723609631351  | 3609E-03 | 3 |
|      | -0.2648088907195762E-02 | -0.2503624521019339E-02                | 0.7340779284267858E-05                 | -0.4648582726231577E-02 | 0.5671677647293649  | 9E-03  | 0.2729668397321  | 536E-02  |   |
| 2    | 0.1038408478510598E-04  | -0.2635984465563676E-04                | 0.4138622204178861E-05                 | -0.5339659776272278E-03 | 0.121247219489200   | 98E-02 | 0.173019963522   | 4596E-02 | 2 |
|      | -0.1209882437876063E-02 | 0.4800088231299373E-03                 | -0.2225445365786877E-03                | 0.5146088155954648E-02  | -0.2544218777471719 | 9E-03  | 0.2506098258927  | 214E-02  |   |
| <    |                         |                                        |                                        |                         |                     |        |                  |          |   |
|      |                         |                                        |                                        |                         | Ln 1, Col 1         | 100%   | Unix (LF) U      | TF-8     |   |

## Setting Up The bscript

Equations: Why We Need To Keep Recomputing The WAVECAR

#### What's In The WAVECAR File?

A bunch of binary data that you'll have to read through Fortran scripts

| NBAND  | number of bands                                |
|--------|------------------------------------------------|
| ENCUTI | 'initial' cut-off energy                       |
| AX     | 'initial' basis vectors defining the supercell |
| CELEN  | ('initial') eigenvalues                        |
| FERWE  | ('initial') Fermi-weights                      |
| CPTWFP | ('initial') wavefunctions                      |

https://www.vasp.at/wiki/index.php/WAVECAR

I highly recommend the VASP wiki as a resource for these kinds of questions: https://www.vasp.at/wiki/index.php/The\_VASP\_Manual

#### Why Do We Care?

We need the wavefunctions!

In equilibrium geometry (which is what DFT converges to), the wavefunctions (or KS orbitals in this case) are orthogonal.

That means that there's no "overlap" between our orbitals.

And that means that there's no way for the electrons to transition from one orbital to another.

#### How Do We Get Around This Problem?

We use nuclear motion (molecular dynamics) to our advantage!

If we look at two neighboring "snapshots" of our nuclear configurations (e.g. p134 and p135), the nuclei will be in slightly different positions.

This means that the sets of orbitals will also be slightly different.

And that means that the orbitals from our first snapshot won't be orthogonal to the orbitals from our second snapshot!

#### How Do We Use This?

We have supercomputers do disgusting integrals so we don't have to!

Imagine we only shift the position of the  $I^{\text{th}}$  nucleus by a little bit. Then the "overlap" of the orbitals between our snapshots will be given by  $V_{ij}(\Delta \vec{R}_I) = \frac{1}{\Delta R_I} \int d\vec{r} \varphi_i^*(\vec{r}, \vec{R}_1, ..., \vec{R}_I, ..., \vec{R}_N) \varphi_j(\vec{r}, \vec{R}_1, ..., \vec{R}_I + \Delta \vec{R}_I, ..., \vec{R}_N) \neq \delta_{ij}$ Slightly shifted nucleus Kronecker delta

 $i^{\text{th}}$  wavefunction from our first snapshot

 $j^{\text{th}}$  wavefunction from our second snapshot

Johnson, L.; Kilin, D., Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO2 interface. *Rsc Advances* **2021**, *12* (1), 78-87.

#### What About The Real Equation?

In our systems, all of the nuclei might have moved. Then we have

$$V_{ij}(t) = -\frac{i\hbar}{\Delta t} \int d\vec{r} \,\varphi_i^* \left(\vec{r}, \{\vec{R}_I(t)\}\right) \varphi_j \left(\vec{r}, \{\vec{R}_I(t+\Delta t)\}\right)$$

Set of nuclear positions from our first snapshot

Set of nuclear positions from our second snapshot

This is the equation that we actually use.

Johnson, L.; Kilin, D., Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO2 interface. *Rsc Advances* **2021**, *12* (1), 78-87.

#### What Do We Do With The Overlaps?

**Electron dynamics!** I used Redfield Theory. Redfield, A. G., The Theory of Relaxation Processes\*\*This work was started while the author was at Harvard University, and was then partially supported by Joint Services Contract N5ori-76, Project Order I. In *Advances in Magnetic and Optical Resonance*, Waugh, J. S., Ed. Academic Press: 1965; Vol. 1, pp 1-32.

**The Redfield tensor** *V* is in there somewhere

$$R_{ijkl} = \Gamma_{ijkl}^{+} + \Gamma_{ijkl}^{-} - \delta_{ij} \sum_{m} \Gamma_{kmml}^{+} - \delta_{kl} \sum_{m} \Gamma_{immj}^{-}$$

is used to solve the time-dependent electron density matrix

$$\frac{d\rho_{ij}}{dt} = \frac{-i}{h} \sum_{k} (F_{ik}\rho_{kj} - \rho_{ik}F_{kj}) + \left(\frac{d\rho_{ij}}{dt}\right)_{diss}$$

which gives us electronic transition rates!

*R* is in there somewhere

Johnson, L.; Kilin, D., Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO2 interface. *Rsc Advances* **2021**, *12* (1), 78-87.

#### Enter The bscript:

bash script

Run VASP

WAVECAR,

script/directory

*j* of interest.

~/bin/bscript\_spin\_YH.sh

note that there are several versions of the bscript and I haven't done any verifications on them recently. You'll want a different version depending on how you're handling spin and such

module swap PrgEnv-intel PrgEnv-gnu mkdir UP mkdir DOWN cp p000 POSCAR srun -n64 -c4 --cpu-bind=cores vasp\_gam ~/bin/SPIN\_OS/extract\_energy\_pop cp energy\_pop UP/energy\_pop\_up.000 Loop through all of our snapshots cp energy\_pop\_down DOWN/energy\_pop\_down.000 Format it to for((i=1;\$i<1000;i=\$((\$i+1)))); do</pre> e.g. p005 Save a copy of our "first" snapshot, j=\$(printf "%.3d" "\$i") instead of p5 echo p\$j so it doesn't get overwritten Might have to cp WAVECAR WAVECAROLD change this Update the nuclear positions cp p\$j POSCAR srun –n64 –c4 –cpu-bind=cores vasp\_gam ~/bin/SPIN\_OS/extract\_energy\_pop cp energy\_pop UP/energy\_pop\_up.\$j cp energy\_pop\_down DOWN/energy\_pop\_down.\$; These scripts pulls data from ~/bin/SPIN\_OS/OS\_dipol\_spin\_up\_t mv OS\_STRENGTH UP/os.\$j ~/bin/SPIN OS/ovlap spin polar t mv OS STRENGTH os.\$1 you may need to change the exact mv forMasterEq forMasterEq.\$j gzip forMasterEq.\$j mv coupling coupling.\$j gzip coupling.\$j The coupling files contain the values gzip OS\_STRENGTH os.\$j of  $V_{ii}$  for all the pairs of orbitals *i* and mv coupling\* UP/. mv OS\_STR\* UP/. mv os\* UP/. rm billdata ~/bin/SPIN\_OS/OS\_dipol\_spin\_down\_t mv OS\_STRENGTH DOWN/os.\$j ~/bin/SPIN\_OS/ovlap\_spin\_polar\_down\_t mv OS\_STRENGTH os.\$j mv forMasterEq forMasterEq.\$j qzip forMasterEq.\$j mv coupling coupling.\$j gzip coupling.\$j gzip OS\_STRENGTH os.\$j mv coupling\* DOWN/. mv OS\_STR\* DOWN/. mv os\* DOWN/. rm billdata

rm energy\_pop

## Calculation of $V_{ij}$

~/bin/K-OS/overlap.f

These are for multiline commands

Fortran script

Many bscripts will directly call an overlap.f script

This is the definition of the NAC function that calculates non-adiabatic couplings  $(V_{ij})$ , found at line 1033

"T" generally means "first snapshot" and "dT" generally means "second snapshot"

```
subroutine NAC(WT,WdT,NtdtKt,Nt,Ntdt,DD,nbandmin,nbandmax,
       ikw,ikw1,nwk,npdim,nbdim,nwdim,nsdim,nSize,ispin,npw)
        implicit real*8 (a-h,o-z)
        complex*8 WT(npdim,nbdim,nwdim,nsdim),
       & WdT(npdim, nbdim, nwdim, nsdim)
         real*8 NtKtdt(nbandmin:nbandmax,nbandmin:nbandmax),
       & Nt(nbandmin:nbandmax),Ntdt(nbandmin:nbandmax),
       & DD(nbandmin:nbandmax,nbandmin:nbandmax),
       & NORM1,NORM2,NtdtKt
                                          comment
          CHARACTER(LEN=20) :: t1,t2,t3
         CHARACTER (LEN=16)
                                 :: fileout ! file name for output
          write(fileout, '(A9, I2.2, A1, I2.2, A1, I1.1)') 'coupling.', ikw, '.',
       & ikw1,'.',ispin
            write(fileout,'(A8)') 'coupling'
          POTIM=1D0
          open(141, file=fileout)
comment
          do i=1,nSize
            Nt(i)=0D0
            Ntdt(i)=0D0
            do j=1,nSize
              NtKtdt(i,j)=0D0
              DD(i,j)=0D0
            enddo
          enddo
```

## Calculation of $V_{ii}$

Fortra

Many bscripts will directly call an overlap

This is the definition of the NAC function calculates non-adiabatic couplings  $(V_{ij})$ , line 1033

"T" generally means "first snapshot" and generally means "second snapshot"

```
~/bin/K-OS/overlap.f
     real*8 NtKtdt(nbandmin:nbandmax,nbandmin:nbandmax),
   & Nt(nbandmin:nbandmax),Ntdt(nbandmin:nbandmax),
   & DD(nbandmin:nbandmax,nbandmin:nbandmax),
   & NORM1.NORM2.NtdtKt
      CHARACTER(LEN=20)
                             :: fileout ! file name for output
     CHARACTER (LEN=16)
      write(fileout, '(A9, I2.2, A1, I2.2, A1, I1.1)') 'coupling.', ikw, '.',
   & ikw1,'.',ispin
        write(fileout,'(A8)') 'coupling'
      POTIM=1D0
      open(141,file=fileout)
      do i=1.nSize
        Nt(i) = 0D0
        Ntdt(i)=0D0
        do j=1, nSize
          NtKtdt(i,j)=0D0
          DD(i,j)=0D0
        enddo
      enddo
Overlap of "old wavecar" with other "old wavecar": <psi(t+dt)|psi(t+dt)>
           do i=nbandmin, nbandmax
           overlap=0D0
             do k=1,npw
           overlap=overlap+WT(k,i,ikw,ispin)*
   &conjg(WT(k,i,ikw,ispin))
             enddo
      print*, 'Nt(i)=',Nt(i)
           enddo
```



🗞 Wdl (npdim, c pri t\*,'Nt(i)=',Nt(i) real\*8 NtK enddo Calcula & Nt(nbandmi & DD(nbandmi!-& NORM1, NORM! Overlap of "new wavecar" with other "new wavecar": <psi(t+dt)|psi(t+dt)> CHARACTER!-----CHARACTER Many bscripts will write(fil do i=nbandmin.nbandmax & ikw1,'.'.i overlap=0D0 write(f do k=1.npw This is the definitid POTIM=1D0 open(141, &conjg(WdT(k,i,ikw1,ispin)) calculates non-adia do i=1,nS enddo line 1033 Nt(i) = 0Ntdt(i)=overlap Ntdt(i)c print\*, 'Ntdt(i)=',Ntdt(i),Nt(i) do j=1, enddo NtKtd!--"T" generally mear DD(i,! Overlap of "old wavecar" with "new wavecar": 1-st part of <psi(t+dt)|psi(t)> generally means "s enddo enddo do i=nbandmin.nbandmax do j=nbandmin, nbandmax Overlap of "old overlap=0D0 do k=1.npw do i overlap=overlap+WdT(k,j,ikw1,ispin)\* over &conjg(WT(k,i,ikw,ispin)) do enddo over &conjg(WT(k,c write(401,\*) NtKtdt(i,j) print\*, overlap enc enddo !j-cycle print\*, 'N enddo ! i-cycle endde print\*, 'cycle 1', overlap

# MATLAB: Reading Coupling Files

Group Meeting 6/14/2022

Adam Flesche

#### MATLAB & Input Files

- Two types are needed:
  - coupling.###
  - energy\_pop
- These are used in the "correlation\_v7.m" script
- This file must be modified to suit your system
  - The numerical range of states in energy\_pop as well as the HOMO
  - The method which MATLAB uses to read coupling.### files

| 8  |   |                                           |
|----|---|-------------------------------------------|
| 9  |   | <pre>II=sqrt(-1);</pre>                   |
| 10 |   | HOMO=82                                   |
| 11 |   | Omin <mark>=</mark> 64                    |
| 12 |   | Omax <mark>=</mark> 99                    |
| 13 |   | nO=Omax-Omin+1;                           |
| 14 |   | <pre>energy_pop=load('energy_pop');</pre> |
| 15 |   | <pre>e=energy_pop(:,2);</pre>             |
| 16 |   | <pre>nu=energy_pop(:,1);</pre>            |
| 17 |   |                                           |
| 18 |   |                                           |
| 19 | Ę | %for k=1:9;                               |
| 20 |   | %k                                        |
| 21 |   | %file=['coupling.00',num2str(k)];         |
| 22 |   | <pre>%c(:,:,k)=load(file);</pre>          |
| 23 |   | %end;                                     |
| 24 |   | %for k=10:15;%99;                         |
| 25 |   | %k                                        |
| 26 |   | %file=['coupling.0',num2str(k)];          |
| 27 |   | <pre>%c(:,:,k)=load(file);</pre>          |
| 28 | L | %end;                                     |
| 29 | F | for k=106:605 <mark>;</mark>              |
| 30 |   | k                                         |
| 31 |   | <pre>file=['coupling.',num2str(k)];</pre> |
| 32 |   | <pre>c(:,:,k)=load(file);</pre>           |
| 33 | L | end <mark>;</mark>                        |
| 34 |   | CORR=zeros(size(c));                      |
| 35 |   | eCORR=CORR;                               |

#### Reading energy\_pop

- MATLAB needs you to specify the following:
  - Omin, the lowest orbital in energy\_pop
  - Omax, the highest orbital in energy\_pop
  - HOMO
- Find these manually in photon or cori: > more energy\_pop



#### Reading coupling.### Files

- The script reads coupling files as "coupling." and grabs the number in the filename "###"
- MATLAB struggles with reading numbers in the filename:
  - "coupling.023" would read as "023", MATLAB does not understand this as 23.
  - "coupling.009" would read as "009", etc.

19 %for k=1:9; 20 %k %file=['coupling.00',num2str(k)]; 21 %c(:,:,k)=load(file); 22 23 %end; %for k=10:15;%99; 24 %k 25 %file=['coupling.0',num2str(k)]; 26 27 %c(:,:,k)=load(file); %end; 28 29 for k=106:605; 30 k 31 file=['coupling.',num2str(k)]; 32 c(:,:,k)=load(file); 33 end; 34 CORR=zeros(size(c)); 35 eCORR=CORR;

#### Reading coupling.### cont.



#### Input Files (all must be in the same directory)

- coupling.xxx
- energy\_pop
- correlation\_v7.m

```
II=sqrt(-1);
 9
10
          HOMO = 316
11
          Omin=296
12
          Omax=337
13
          nO=Omax-Omin+1;
          energy_pop=load('energy_pop');
14
          e=energy_pop(:,2);
15
          nu=energy_pop(:,1);
16
```

```
18
          % TIME STEPS < 10
19
          for k=1:9;
     -
20
          file=['coupling.00',num2str(k)];
21
22
          c(:,:,k)=load(file);
          end;
23
24
          % 10 <= TIME STEPS < 100
25
          for k=10:61;%99;
26
          k
          file=['coupling.0',num2str(k)];
27
          c(:,:,k)=load(file);
28
29
          end;
30
31
          % TIME STEPS > 100
          for k=120:149;
32
33
          k
          file=['coupling.',num2str(k)];
34
          % STORES COUPLING AS ARRAY, THIRD INDEX = TIME STEP
35
36
          c(:,:,k)=load(file);
37
          end;
```

#### Calculating RRR



#### **Convert Couplings into RRR for Spin Polarized Case**

Sarah Ghazanfari

Department of Civil, Construction and Environmental Engineering

North Dakota State University, Fargo, ND, USA

June 2022

Required files to run correlation.m file:

- energy\_pop
- coupling.XXX files In each directory unzip the coupling files using: gunzip coupling\*



```
for k=1:9;
 file=['coupling.00',num2str(k)];
 c(:,:,k)=load(file);
 end;
 for k=10:99
                                          Importing coupling files
 file=['coupling.0',num2str(k)];
 c(:,:,k)=load(file);
 end;
 for k=100:360;
 file=['coupling.',num2str(k)];
 c(:,:,k)=load(file);
 end;
 CORR=zeros(size(c));
 eCORR=CORR;
                     → Number of steps
 TTT=359;
🗐 for time1=1:359;
 time1
     for time2=time1:360;
         for i=1:n0;
              for j=1:n0;
```
✓ After running MATLAB successfully, RRR file will be generated.



 $\checkmark$  You need to repeat the same procedure for spin beta component in its directory.

#### RRR file:

| 🗎 RRR 🛛 🛛 |               |               |               |               |               |               |               |               |               |               |               |               |              |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|
| 1         | 0.0000000e+00 | 2.8429023e-02 | 8.3659128e-03 | 2.3020007e-03 | 9.1265931e-04 | 4.0467340e-04 | 2.5230659e-04 | 1.6223806e-04 | 1.2112691e-04 | 8.9128613e-05 | 1.0022953e-04 | 7.8530511e-05 | 6.3766718e-( |
| 2         | 2.8429023e-02 | 0.0000000e+00 | 2.0559988e-02 | 6.6333547e-03 | 2.2669133e-03 | 8.3254438e-04 | 5.1879147e-04 | 3.2260759e-04 | 2.0678220e-04 | 1.1195292e-04 | 9.1837161e-05 | 7.5643802e-05 | 8.6433007e-( |
| 3         | 8.3659128e-03 | 2.0559988e-02 | 0.0000000e+00 | 2.4415721e-02 | 5.3787534e-03 | 2.1533160e-03 | 1.0337633e-03 | 4.3066133e-04 | 2.8901966e-04 | 1.5444143e-04 | 1.3048904e-04 | 8.8675643e-05 | 7.2412306e-( |
| 4         | 2.3020007e-03 | 6.6333547e-03 | 2.4415721e-02 | 0.0000000e+00 | 2.6394693e-02 | 8.0462329e-03 | 2.6645171e-03 | 8.3133679e-04 | 4.1306855e-04 | 2.6565153e-04 | 1.9293450e-04 | 1.6062489e-04 | 1.1480777e-( |
| 5         | 9.1265931e-04 | 2.2669133e-03 | 5.3787534e-03 | 2.6394693e-02 | 0.0000000e+00 | 2.3117055e-02 | 4.5076241e-03 | 2.4973686e-03 | 9.6850248e-04 | 5.6223329e-04 | 3.3561359e-04 | 2.0089424e-04 | 1.6878206e-( |
| 6         | 4.0467340e-04 | 8.3254438e-04 | 2.1533160e-03 | 8.0462329e-03 | 2.3117055e-02 | 0.0000000e+00 | 2.5069754e-02 | 6.9097569e-03 | 1.9973311e-03 | 1.5459024e-03 | 7.8168486e-04 | 2.5944842e-04 | 2.3950524e-( |
| 7         | 2.5230659e-04 | 5.1879147e-04 | 1.0337633e-03 | 2.6645171e-03 | 4.5076241e-03 | 2.5069754e-02 | 0.0000000e+00 | 2.4458101e-02 | 5.2129885e-03 | 1.8269919e-03 | 1.3341168e-03 | 4.7441147e-04 | 2.3958345e-( |
| 8         | 1.6223806e-04 | 3.2260759e-04 | 4.3066133e-04 | 8.3133679e-04 | 2.4973686e-03 | 6.9097569e-03 | 2.4458101e-02 | 0.0000000e+00 | 2.4365948e-02 | 3.7805874e-03 | 2.5360626e-03 | 9.6393559e-04 | 4.9087553e-( |
| 9         | 1.2112691e-04 | 2.0678220e-04 | 2.8901966e-04 | 4.1306855e-04 | 9.6850248e-04 | 1.9973311e-03 | 5.2129885e-03 | 2.4365948e-02 | 0.0000000e+00 | 2.3226061e-02 | 6.7023897e-03 | 2.1237139e-03 | 8.4776411e-( |
| 10        | 8.9128613e-05 | 1.1195292e-04 | 1.5444143e-04 | 2.6565153e-04 | 5.6223329e-04 | 1.5459024e-03 | 1.8269919e-03 | 3.7805874e-03 | 2.3226061e-02 | 0.0000000e+00 | 2.1316136e-02 | 3.7955575e-03 | 2.2253443e-( |
| 11        | 1.0022953e-04 | 9.1837161e-05 | 1.3048904e-04 | 1.9293450e-04 | 3.3561359e-04 | 7.8168486e-04 | 1.3341168e-03 | 2.5360626e-03 | 6.7023897e-03 | 2.1316136e-02 | 0.0000000e+00 | 2.2544681e-02 | 6.8657380e-( |
| 12        | 7.8530511e-05 | 7.5643802e-05 | 8.8675643e-05 | 1.6062489e-04 | 2.0089424e-04 | 2.5944842e-04 | 4.7441147e-04 | 9.6393559e-04 | 2.1237139e-03 | 3.7955575e-03 | 2.2544681e-02 | 0.0000000e+00 | 2.3005528e-( |
| 13        | 6.3766718e-05 | 8.6433007e-05 | 7.2412306e-05 | 1.1480777e-04 | 1.6878206e-04 | 2.3950524e-04 | 2.3958345e-04 | 4.9087553e-04 | 8.4776411e-04 | 2.2253443e-03 | 6.8657380e-03 | 2.3005528e-02 | 0.0000000e+( |
| 14        | 5.5343804e-05 | 6.8037081e-05 | 6.1659882e-05 | 1.2531397e-04 | 1.1649468e-04 | 1.3343484e-04 | 1.9357684e-04 | 3.5816156e-04 | 3.8489475e-04 | 7.3626422e-04 | 1.9443181e-03 | 4.6554077e-03 | 2.1343622e-( |
| 15        | 4.9443277e-05 | 6.3574522e-05 | 9.4537418e-05 | 9.5776732e-05 | 1.1029827e-04 | 1.3374344e-04 | 1.3589973e-04 | 2.0079142e-04 | 2.7665318e-04 | 5.2867422e-04 | 1.5700602e-03 | 2.6453209e-03 | 5.5062215e-( |
| 16        | 3.9182451e-05 | 4.0739069e-05 | 5.7832575e-05 | 6.7855506e-05 | 7.2066321e-05 | 1.0000037e-04 | 1.0209782e-04 | 1.5605554e-04 | 1.5502351e-04 | 2.2219532e-04 | 5.6436095e-04 | 7.8492069e-04 | 2.3593865e-( |
| 17        | 3.0931425e-05 | 3.8982003e-05 | 5.0511534e-05 | 5.6359652e-05 | 7.2575162e-05 | 7.8576224e-05 | 9.1584952e-05 | 9.5227373e-05 | 1.1744302e-04 | 2.2483502e-04 | 2.8523792e-04 | 5.4052413e-04 | 8.0817226e-( |
| 18        | 3.9357666e-05 | 4.7946040e-05 | 5.9614152e-05 | 7.6675791e-05 | 7.5606584e-05 | 7.9851786e-05 | 8.8671391e-05 | 1.1004948e-04 | 1.0459018e-04 | 1.2348767e-04 | 2.0218582e-04 | 2.9659688e-04 | 4.8514200e-( |
| 19        | 4.3246167e-05 | 3.8720903e-05 | 5.8648026e-05 | 7.7626698e-05 | 7.2296713e-05 | 7.1818429e-05 | 7.7949268e-05 | 7.4486558e-05 | 9.3378075e-05 | 9.3743153e-05 | 1.6408647e-04 | 2.0100708e-04 | 2.8101946e-( |
| 20        | 4.6629703e-05 | 4.7442638e-05 | 7.0063609e-05 | 6.7613925e-05 | 8.6950787e-05 | 7.5578265e-05 | 5.4335493e-05 | 9.3611718e-05 | 9.9377205e-05 | 1.1229484e-04 | 1.2957691e-04 | 1.3822610e-04 | 1.7285210e-( |
| 21        | 5.5151330e-05 | 5.7054453e-05 | 8.5628450e-05 | 6.4056179e-05 | 8.9957406e-05 | 1.4719118e-04 | 1.1866230e-04 | 1.3407207e-04 | 1.1949603e-04 | 1.4618355e-04 | 2.3007358e-04 | 1.4664352e-04 | 1.7686853e-( |
| 22        | 8.9411134e-05 | 1.0937613e-04 | 9.0498864e-05 | 1.0248375e-04 | 1.1406297e-04 | 1.2876089e-04 | 2.1327338e-04 | 1.7983043e-04 | 1.6655015e-04 | 2.2105422e-04 | 2.6154514e-04 | 2.3558679e-04 | 2.0531064e-( |
| 23        | 1.2249551e-04 | 1.2244292e-04 | 1.6201562e-04 | 1.7521184e-04 | 2.0978272e-04 | 2.1874452e-04 | 1.5426692e-04 | 2.3830070e-04 | 1.3941026e-04 | 1.9546554e-04 | 1.6948212e-04 | 2.1168459e-04 | 2.9408595e-( |
| 24        | 5.2702834e-04 | 6.4276296e-04 | 8.7730641e-04 | 5.0884721e-04 | 5.0415269e-04 | 4.8695720e-04 | 4.8438111e-04 | 4.2868033e-04 | 3.3866133e-04 | 3.5990912e-04 | 3.9208165e-04 | 3.6786115e-04 | 4.5622974e-( |
| 25        | 5.4028596e-05 | 6.0367577e-05 | 3.9064192e-05 | 4.7410877e-05 | 4.4805690e-05 | 4.9972924e-05 | 7.1926726e-05 | 5.5836751e-05 | 4.9195205e-05 | 4.9270295e-05 | 6.1415109e-05 | 6.6336443e-05 | 5.5676422e-( |
| 26        | 1.0461847e-04 | 7.3223972e-05 | 5.1334040e-05 | 7.9903428e-05 | 6.5473229e-05 | 6.3273802e-05 | 8.6842235e-05 | 5.3350255e-05 | 4.3079348e-05 | 3.5488339e-05 | 2.7925003e-05 | 2.8426903e-05 | 3.9884034e-( |
| 27        | 4.8632045e-06 | 5.6652743e-06 | 4.1831094e-06 | 5.7823721e-06 | 5.5165715e-06 | 6.7413616e-06 | 5.6496851e-06 | 5.8750446e-06 | 5.9455829e-06 | 4.8963822e-06 | 6.4046538e-06 | 6.0313880e-06 | 5.4822890e-( |
| 28        | 6.7522098e-06 | 7.6417379e-06 | 9.5241391e-06 | 1.2045869e-05 | 1.1259587e-05 | 1.0703767e-05 | 1.7506676e-05 | 1.5529541e-05 | 1.8740504e-05 | 1.7646028e-05 | 1.6066903e-05 | 1.7513262e-05 | 1.5946274e-( |
| 29        | 4.4157905e-06 | 4.1783792e-06 | 3.8026790e-06 | 3.0697702e-06 | 4.7488411e-06 | 7.1178788e-06 | 4.6011132e-06 | 4.5885403e-06 | 4.9836079e-06 | 6.8324122e-06 | 5.4101264e-06 | 6.2096446e-06 | 5.8862135e-( |
| 30        | 5.2454754e-06 | 4.8365660e-06 | 4.6857351e-06 | 5.1937358e-06 | 5.7655296e-06 | 4.6358613e-06 | 5.5831620e-06 | 5.5744597e-06 | 5.5677736e-06 | 6.9420868e-06 | 7.9708191e-06 | 8.0966135e-06 | 6.6737925e-( |
| 31        | 7.0113348e-06 | 5.1402579e-06 | 6.6640265e-06 | 7.4393734e-06 | 6.1931955e-06 | 6.3918726e-06 | 7.3022447e-06 | 7.2564817e-06 | 5.8444799e-06 | 6.1384526e-06 | 7.2813319e-06 | 6.8606362e-06 | 5.3126346e-( |
| 32        | 9.1160289e-06 | 7.7561646e-06 | 7.2434066e-06 | 6.0514046e-06 | 6.7227205e-06 | 6.1041480e-06 | 6.3895741e-06 | 5.9123957e-06 | 5.3514076e-06 | 5.9814561e-06 | 5.5700634e-06 | 5.2720505e-06 | 4.8365627e-( |
| 33        | 5.3730621e-06 | 6.8779587e-06 | 6.1614027e-06 | 5.5784038e-06 | 6.9191793e-06 | 5.3642936e-06 | 5.7886426e-06 | 6.5707557e-06 | 5.6777603e-06 | 6.3121398e-06 | 4.0719733e-06 | 4.4736330e-06 | 3.8717284e-( |
| 34        | 6.4883796e-06 | 5.3847212e-06 | 5.2003735e-06 | 7.0439939e-06 | 5.9602249e-06 | 5.4977779e-06 | 6.9166127e-06 | 7.2801194e-06 | 7.0731677e-06 | 5.0996012e-06 | 5.4167270e-06 | 4.1811458e-06 | 3.7403966e-( |
| 35        | 5.5906505e-06 | 6.0305597e-06 | 5.3708046e-06 | 6.4028490e-06 | 5.6508546e-06 | 6.0746404e-06 | 5.7673245e-06 | 4.9744093e-06 | 5.6524805e-06 | 4.7495335e-06 | 5.8706387e-06 | 4.9637765e-06 | 5.7016289e-( |
| 36        | 4.6077732e-06 | 5.3189365e-06 | 5.3915533e-06 | 4.5090043e-06 | 4.8925912e-06 | 5.4087836e-06 | 6.2746641e-06 | 5.2490581e-06 | 5.9208007e-06 | 5.6237898e-06 | 6.5283942e-06 | 6.0466150e-06 | 5.0666037e-( |
| 37        | 4.5053604e-06 | 5.3057060e-06 | 5.9627369e-06 | 5.4532739e-06 | 5.8452255e-06 | 4.2155507e-06 | 4.7241843e-06 | 5.6960949e-06 | 6.7336721e-06 | 5.4309643e-06 | 6.0841825e-06 | 6.1880933e-06 | 5.8508114e-( |
| 38        | 6.7840856e-06 | 5.9407708e-06 | 7.2029199e-06 | 6.7447690e-06 | 7.1618286e-06 | 7.3700563e-06 | 6.6117745e-06 | 5.8498243e-06 | 6.9434251e-06 | 7.4344461e-06 | 7.7898607e-06 | 8.1272398e-06 | 7.5868155e-( |
| 39        | 8.3502297e-06 | 7.0000942e-06 | 6.4441825e-06 | 6.4940045e-06 | 6.4305015e-06 | 6.0892962e-06 | 4.4916103e-06 | 4.7897525e-06 | 5.2306791e-06 | 5.7959289e-06 | 6.2435282e-06 | 6.0856466e-06 | 5.1212333e-( |
| 40        | 9.1968824e-06 | 5.7568078e-06 | 8.2307411e-06 | 6.7670344e-06 | 6.9908353e-06 | 6.3230897e-06 | 6.6407073e-06 | 5.8109758e-06 | 7.1257677e-06 | 6.2113536e-06 | 6.7893559e-06 | 5.3762668e-06 | 4.8754596e-( |
| 41        | 1.1757351e-05 | 1.0981647e-05 | 9.5731794e-06 | 9.2920260e-06 | 8.4061560e-06 | 7.4320237e-06 | 6.2424036e-06 | 5.5265371e-06 | 5.1638304e-06 | 6.4080449e-06 | 6.0585739e-06 | 6.3277874e-06 | 4.7869010e-( |
| 42        | 1.0128478e-05 | 7.9469307e-06 | 7.4513865e-06 | 7.5967710e-06 | 8.3217529e-06 | 7.0018326e-06 | 5.9631160e-06 | 7.3571835e-06 | 8.0493010e-06 | 6.5325952e-06 | 5.9111506e-06 | 8.1323533e-06 | 7.9323103e-( |

# Introduction to the Autocorrelation Function

Summer 2022 Computational Chemistry Skills Presentation 6/14/2022 Hadassah B. Griffin

# Overview of Calculations

- Heat Model
- Molecular Dynamics (MD)
- Nonadiabatic Coupling Calculations
- Autocorrelation Function Calculations
- Redfield Tensor
- Observables

# Autocorrelation Functions

- Correlation Functions (generic): describe how different quantities compare at a specific point in space or time
  - Example: convolution
- Autocorrelation Function: a correlation function where a quantity is compared with itself



# Autocorrelation for Nonadiabatic Couplings

• Autocorrelation function:

• 
$$M_{ijkl}(\tau) = \frac{1}{T} \int_0^T V_{ij}(t + \tau) V_{kl}(t) dt$$

- T: duration of the trajectory of MD
- Ijkl: indices for the coupling time snapshots
- Note the averaging
- Provides first order correction approximation for the of adiabatic couplings of the electrons for time dependent perturbation theory and a second order correction perturbation with respect to the electron-nuclear interaction

# Fourier Transform

- Fourier Transform of autocorrelation function: •  $\Gamma_{\sigma,ijkl}^+ = \frac{1}{T} \int_0^T e^{-i \omega_{ij} t} M_{\sigma,ijkl}(t) d\tau$ •  $\Gamma_{\sigma,ijkl}^- = \frac{1}{T} \int_0^T e^{-i \omega_{kl} t} M_{\sigma,ijkl}(t) d\tau$
- Fourier transform pieces used to provide components of the Redfield Tensor
- Redfield Tensor then used to compute electron dynamics

# Correlation of HOMO-1 through HOMO+3



Visualization of Autocorrelation Function Elements as Matrix Elements of Redfield Tensor
(Model: Cd33Se33 + Pb16Se16 Nanocrystal)
• p100 - p105
• p100 - p442



# **Cited Sources**

- Image and general definition of autocorrelation credits: <u>https://en.wikipedia.org/wiki/Autocorrelation</u>
- Equations and concepts:
  - "Spin Unrestricted Excited State Relaxation Study of Vanadium(IV)-Doped Anatase", Stephanie J. Jensen, 2016
  - Summer 2018 Skill presentation, Aaron Forde

# Definition of the Redfield Tensor

As made by: ~/bin/MATLAB/correlation\_v7.m

Landon Johnson

# Nonadiabatic Couplings

$$V_{ij}(t) = -\frac{i\hbar}{\Delta t} \int d\vec{r} \,\varphi_i^* \big(\vec{r}, \{\vec{R}_I(t)\}\big) \varphi_j \big(\vec{r}, \{\vec{R}_I(t+\Delta t)\}\big)$$

"Overlap" of orbitals i and j as the nuclei move around

# Autocorrelation Function



This value is high if overlap between these orbitals usually leads to overlap between these orbitals after a delay of  $\tau$ 

 $M_{ijij}(\tau)$  is high for some  $\tau >> 0 \implies$  orbitals i and j tend to overlap periodically with a period of  $\tau \chi$ 

 $M_{ijij}(\tau)$  drops to  $\approx 0$  quickly  $\Rightarrow$  orbitals i and j overlap at random times, not periodically  $\checkmark$ 



# Autocorrelation Function

$$M_{ijkl}(\tau) = \int_0^{t_{max}-\tau} dt V_{ij}(t+\tau) V_{kl}(t)$$

The autocorrelation function will often display oscillatory and/or decaying behavior, i.e.  $M_{ijij}(\tau) \approx \cos(\omega \tau) \exp(-\gamma \tau)$  for some frequency  $\omega$  and decay rate  $\gamma$ 

 $\omega \gg \gamma \Rightarrow$  "monochromatic," FT will have strong frequency dependence, i.e.  $M(\omega) \chi$  depends strongly on all values of  $\tau$ 

 $\gamma \gg \omega \Rightarrow$  "white noise," FT will be ~constant, i.e.  $M(\omega) =$ constant, so we only really care about  $M(\tau = 0)$ 

# **Transition Rates**

$$\Gamma_{ijkl}^{+} = \int d\tau M_{ijkl}(\tau) \exp(-i\omega_{kl}\tau)$$
$$\Gamma_{ijkl}^{-} = \int d\tau M_{ijkl}(\tau) \exp(-i\omega_{ij}\tau)$$

 $\omega_{kl}$  is the angular frequency of a photon with the same energy as the energy gap between orbitals k and l

Note that  $\Gamma_{ijij}^+ = \Gamma_{ijij}^-$ 

Also note that if  $M_{ijij}(\tau)$  drops to  $\approx 0$  quickly, then  $\Gamma^+_{ijij} \approx M_{ijij}(0)$ 



Note that for  $R_{ijij}$  with  $i \neq j$  (i.e. transitions between two DIFFERENT orbitals),  $\delta_{ij} = 0$ , so  $R_{ijij} \propto \Gamma^+_{ijij} \approx M_{ijij}(0)$ 



Nonadiabatic couplings without spin (Plot the Redfield tensor elements and correlation function)



gif

• Case of study: a condensed 3D model for PM6 conjugated polymer



• What do we need to start the visualization:

□ The "energy\_pop" file:

| 📔 E:\PhD                  | Papers\9_MD_DFT\R             | esults\PM6\COUPLINGS\en                         | ergy_pop - Notepad++                        |
|---------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------|
| <u>F</u> ile <u>E</u> dit | <u>S</u> earch <u>V</u> iew E | <u>n</u> coding <u>L</u> anguage Se <u>t</u> ti | ngs T <u>o</u> ols <u>M</u> acro <u>R</u> u |
| ا 占 🕞                     | = 🖹 💦 📥                       | 🐇 🐚 🗈 🔿 C 🛛 🖷                                   | h 🍇   🔍 🔍   🗔 🔤                             |
| 🔚 VASP C                  | Commends.txt 🗵 🔚 er           | nergy_pop 🔛                                     |                                             |
| 4                         | 1242                          | -2.0024                                         | 2.00000                                     |
| 5                         | 1243                          | -1.9964                                         | 2.00000                                     |
| 6                         | 1244                          | -1.9858                                         | 2.00000                                     |
| 7                         | 1245                          | -1.9810                                         | 2.00000                                     |
| 8                         | 1246                          | -1.9540                                         | 2.00000                                     |
| 9                         | 1247                          | -1.9438                                         | 2.00000                                     |
| 10                        | 1248                          | -1.9313                                         | 2.00000                                     |
| 11                        | 1249                          | -1.9202                                         | 2.00000                                     |
| 12                        | 1250                          | -1.8989                                         | 2.00000                                     |
| 13                        | 1251                          | -1.8818                                         | 2.00000                                     |
| 14                        | 1252                          | -1.8572                                         | 2.00000                                     |
| 15                        | 1253                          | -1.8537                                         | 2.00000                                     |
| 16                        | 1254                          | -1.7728                                         | 2.00000                                     |
| 17                        | 1255                          | -1.7183                                         | 2.00000                                     |
| 18                        | 1256                          | -1.6238                                         | 2.00000                                     |
| 19                        | 1257                          | -1.5502                                         | 2.00000                                     |
| 20                        | 1258                          | -1.5468                                         | 2.00000                                     |
| 21                        | 1259                          | -1.4835                                         | 2.00000                                     |
| 22                        | 1260                          | -1.4775                                         | 2.00000                                     |
| 23                        | 1261                          | -1.4472                                         | 2.00000                                     |
| 24                        | 1262                          | -1.3816                                         | 2.00000                                     |
| 25                        | 1263                          | -1.3042                                         | 2.00000                                     |
| 26                        | 1264                          | -1.2625                                         | 2.00000                                     |
| 27                        | 1265                          | -1.1599                                         | 2.00000                                     |
| 28                        | 1266                          | -1.1378                                         | 2.00000                                     |
| 29                        | 1267                          | -1.0200                                         | 2.00000                                     |
| 30                        | 1268                          | -1.0057                                         | 2.00000                                     |
| 31                        | 1269                          | -0.9160                                         | 2.00000                                     |
| 32                        | 1270                          | 0.2874                                          | 0.00000                                     |
| 33                        | 1271                          | 0.3649                                          | 0.00000                                     |
| 34                        | 1272                          | 0.3715                                          | 0.00000                                     |
| 35                        | 1273                          | 0.4277                                          | 0.00000                                     |
| 36                        | 1274                          | 0.4535                                          | 0.00000                                     |
| 37                        | 1275                          | 0.5102                                          | 0.00000                                     |
| 38                        | 1276                          | 0.5503                                          | 0.00000                                     |
| 39                        | 1277                          | 0.5834                                          | 0.00000                                     |
| 40                        | 1278                          | 0.6428                                          | 0.00000                                     |
| 41                        | 1279                          | 0.6553                                          | 0.00000                                     |
| 42                        | 1280                          | 0.6869                                          | 0.00000                                     |
| 43                        | 1281                          | 0.7273                                          | 0.00000                                     |
| 44                        | 1282                          | 1.0196                                          | 0.00000                                     |
| 45                        | 1283                          | 1.0484                                          | 0.00000                                     |
| 46                        | 1284                          | 1.0674                                          | 0.00000                                     |
| 1 47                      | 1285                          | 1.1233                                          | 0.0000                                      |

• What do we need to start the visualization:

□ Having the coupling files "couplingXXX" in a same directory of you Matlab code:

□ If you have zipped files (\*.gz) on the cori or photon, you can unzip them via following commands:

gzip -d \*.gz gzip -d coupling\*

tar –xvzf \*.gz

- What do we need to start the visualization:
- □ Having the coupling files "couplingXXX" in a same directory of you Matlab code:

| _   🖉 _ =   COUPLING         |                                                       |               |               |                   |               |                |                |               |                |                |              |              |  |
|------------------------------|-------------------------------------------------------|---------------|---------------|-------------------|---------------|----------------|----------------|---------------|----------------|----------------|--------------|--------------|--|
| File Home Share View         |                                                       |               |               |                   |               |                |                |               |                |                |              | ~ 🕐          |  |
| 🖌 📄 🛣 Cu                     | nt 🚺 🚺 🗙 📑                                            | New item      | · 🕞 🛛         | Open 👻 📑 Sel      | ect all       |                |                |               |                |                |              |              |  |
| Pin to Quick Conv. Parte     | ppy path Maye Copy Delete Repare                      | Easy acces    | Properties    | Edit 🛛 🔡 Sel      | ect none      |                |                |               |                |                |              |              |  |
| access Paste R               | ste shortcut to v to v                                | folder        | - Toperties   | 😸 History 🛛 🔡 Inv | ert selection |                |                |               |                |                |              |              |  |
| Clipboard                    | Organize                                              | New           | Ope           | n :               | Select        |                |                |               |                |                |              |              |  |
| ← → ✓ ↑ → This PC            | > Desktop > COUPLING                                  |               |               |                   |               |                |                |               |                |                | ∨ Ö Sea      | rch C 🔎      |  |
|                              | <pre> correlation_v3d_full_revised_summer2021.m</pre> | coupling.030  | coupling.060  | coupling.090      | coupling.120  | coupling.150   | coupling.180   | coupling.210  | coupling.240   | 📄 coupling.270 | coupling.300 | coupling.3   |  |
| 🖈 Quick access               | 📔 coupling.001                                        | coupling.031  | coupling.061  | coupling.091      | coupling.121  | 📄 coupling.151 | 📄 coupling.181 | coupling.211  | 📄 coupling.241 | coupling.271   | coupling.301 | 📄 coupling.3 |  |
| Desktop 🖈                    | coupling.002                                          | coupling.032  | coupling.062  | coupling.092      | coupling.122  | coupling.152   | coupling.182   | coupling.212  | coupling.242   | coupling.272   | coupling.302 | coupling.3   |  |
| 🕂 Downloads 🛛 🖈              | coupling.003                                          | coupling.033  | coupling.063  | coupling.093      | coupling.123  | coupling.153   | coupling.183   | coupling.213  | coupling.243   | coupling.273   | coupling.303 | coupling.3   |  |
| 🔮 Documents 🛛 🖈              | coupling.004                                          | coupling.034  | coupling.064  | coupling.094      | coupling.124  | coupling.154   | coupling.184   | coupling.214  | coupling.244   | coupling.274   | coupling.304 | coupling.3   |  |
| 📰 Pictures 🛛 🖈               | coupling.005                                          | coupling.035  | coupling.065  | coupling.095      | coupling.125  | coupling.155   | coupling.185   | coupling.215  | coupling.245   | coupling.275   | coupling.305 | coupling.3   |  |
| 7_DFT_CP                     | coupling.006                                          | coupling.036  | coupling.066  | coupling.096      | coupling.126  | coupling.156   | coupling.186   | coupling.216  | coupling.246   | coupling.276   | coupling.306 | coupling.3   |  |
| COUPLING                     | coupling.007                                          | coupling.037  | coupling.067  | coupling.097      | coupling.127  | coupling.157   | coupling.187   | coupling.217  | coupling.247   | coupling.277   | coupling.307 | coupling.3   |  |
|                              | coupling.008                                          | coupling.038  | coupling.068  | coupling.098      | coupling.128  | coupling.158   | coupling.188   | coupling.218  | coupling.248   | coupling.278   | coupling.308 | coupling.3   |  |
| Pofe                         | coupling.009                                          | coupling.039  | coupling.069  | coupling.099      | coupling.129  | coupling.159   | coupling.189   | coupling.219  | coupling.249   | coupling.279   | coupling.309 | coupling.3   |  |
| in Kers                      | coupling.010                                          | coupling.040  | coupling.070  | coupling.100      | coupling.130  | coupling.160   | coupling.190   | coupling.220  | coupling.250   | coupling.280   | coupling.310 | coupling.3   |  |
| 🧒 OneDrive - North Dakota Ur | coupling.011                                          | coupling.041  | coupling.071  | coupling.101      | coupling.131  | coupling.161   | coupling.191   | coupling.221  | coupling.251   | coupling.281   | coupling.311 | coupling.3   |  |
| This DC                      | coupling.012                                          | coupling.042  | coupling.072  | coupling.102      | coupling.132  | coupling.162   | coupling.192   | coupling.222  | coupling.252   | coupling.282   | coupling.312 | coupling.3   |  |
| - This PC                    | coupling.013                                          | coupling.043  | coupling.073  | coupling.103      | coupling.133  | coupling.163   | coupling.193   | coupling.223  | coupling.253   | coupling.283   | coupling.313 | coupling.3   |  |
| Trive                        | coupling.014                                          | coupling.044  | coupling.074  | coupling.104      | coupling.134  | coupling.164   | coupling.194   | coupling.224  | coupling.254   | coupling.284   | coupling.314 | coupling.3   |  |
| E Desktop                    | coupling.015                                          | coupling.045  | coupling.075  | coupling.105      | coupling.135  | coupling.165   | coupling.195   | coupling.225  | coupling.255   | coupling.285   | coupling.315 | coupling.3   |  |
| Documents                    | coupling.016                                          | coupling.046  | coupling.076  | coupling.106      | coupling.136  | coupling.166   | coupling.196   | coupling.226  | coupling.256   | coupling.286   | coupling.316 | coupling.3   |  |
| 🖶 Downloads                  | coupling.017                                          | coupling.04/  | coupling.0//  | coupling.10/      | coupling.13/  | coupling.16/   | coupling.197   | coupling.227  | coupling.257   | coupling.28/   | coupling.31/ | coupling.3   |  |
| 👌 Music                      | coupling.018                                          | coupling.048  | coupling.0/8  | coupling.108      | coupling.138  | coupling.168   | coupling.198   | coupling.228  | coupling.258   | coupling.288   | coupling.318 | coupling.    |  |
| Pictures                     | Coupling.019                                          | coupling.049  | coupling.079  | coupling. 109     | Coupling. 139 | coupling. 109  | coupling. 199  | coupling.229  | coupling.259   | coupling.289   | coupling.319 | coupling.    |  |
| Videos                       | coupling.020                                          | coupling.050  | coupling.080  | coupling. 110     | coupling. 140 | coupling.170   | coupling.200   | coupling.230  | coupling.200   | coupling.290   | coupling.320 | coupling.    |  |
| Windows (C)                  | coupling.021                                          | coupling.051  | coupling.081  | Coupling.111      | Coupling.141  | coupling.171   | Coupling.201   | Coupling.231  | coupling.201   | coupling.291   | coupling.321 | Coupling.2   |  |
| Legal Dick (E)               | coupling.022                                          | coupling.052  | coupling.082  | coupling 112      | coupling 142  | coupling.172   | coupling 202   | coupling 222  | coupling 262   | coupling 292   | coupling 222 | coupling.    |  |
| Local Disk (E:)              | coupling 024                                          | coupling.053  | coupling.083  | coupling 114      | coupling 144  | coupling 174   | coupling 204   | coupling 234  | coupling 264   | coupling 294   | coupling 324 | coupling.2   |  |
| 💣 Network                    | Coupling 025                                          | coupling.054  | coupling.004  | coupling 115      | coupling 145  | coupling 175   | coupling 204   | coupling 235  | coupling 265   | coupling 295   | coupling 325 | Coupling 3   |  |
|                              | coupling.026                                          | coupling.055  | coupling.086  | coupling.116      | coupling.146  | coupling.175   | coupling.205   | coupling.235  | coupling.266   | coupling.295   | coupling.326 | Coupling 3   |  |
|                              | coupling.027                                          | coupling.057  | coupling.087  | coupling.117      | coupling,147  | coupling,177   | coupling.207   | coupling.237  | coupling 267   | coupling.297   | coupling.327 | Coupling 3   |  |
|                              | coupling.028                                          | coupling.058  | coupling.088  | coupling.118      | coupling.148  | coupling.178   | coupling.208   | coupling.238  | coupling.268   | coupling.298   | coupling.328 | Coupling.3   |  |
|                              | coupling.029                                          | coupling.059  | coupling.089  | coupling,119      | coupling,149  | coupling.179   | coupling.209   | coupling.239  | coupling,269   | coupling.299   | coupling.329 | coupling.3   |  |
|                              | Contrainer                                            | _ coapingioss | _ coopingioos |                   |               |                | Cooping.205    | - coopingatoo |                |                |              | - cooping.   |  |

• What do we need to start the visualization:

□ Matlab script "correlation\_v3d\_full\_revised\_summer2021.m":

| Z Editor - E:\PhD Papers\9_MD_DFT\Results\PM6\COUPLINGS\correlation_v3d_full_revised_summer2021.m |                                                                              |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| correlation_v3d_full_revised_summer2021.m 🕱 🕇                                                     |                                                                              |  |  |  |  |  |  |  |  |  |
| 4                                                                                                 | % energy_pop file is needed                                                  |  |  |  |  |  |  |  |  |  |
| 5                                                                                                 | % as output, this program generates file RRR                                 |  |  |  |  |  |  |  |  |  |
| 6 -                                                                                               | clc;close all;                                                               |  |  |  |  |  |  |  |  |  |
| 7 -                                                                                               | clear;                                                                       |  |  |  |  |  |  |  |  |  |
| 8                                                                                                 |                                                                              |  |  |  |  |  |  |  |  |  |
| 9                                                                                                 | <pre>% II=sqrt(-1);</pre>                                                    |  |  |  |  |  |  |  |  |  |
| 10                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 11 -                                                                                              | <pre>energy_pop=importdata('energy_pop');</pre>                              |  |  |  |  |  |  |  |  |  |
| 12                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 13                                                                                                | % Number of time steps                                                       |  |  |  |  |  |  |  |  |  |
| 14 -                                                                                              | TTT=400;                                                                     |  |  |  |  |  |  |  |  |  |
| 15                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 16                                                                                                | % Nubmer of Coupling files, usually around 1000                              |  |  |  |  |  |  |  |  |  |
| 17 -                                                                                              | n_Coupling_files=400;                                                        |  |  |  |  |  |  |  |  |  |
| 18                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 19                                                                                                | _                                                                            |  |  |  |  |  |  |  |  |  |
| 20 -                                                                                              | O_min <mark>=energy_pop(1,1) %</mark> Smallest orbital number in energy_pop  |  |  |  |  |  |  |  |  |  |
| 21 -                                                                                              | O_max <mark>=energy_pop(end,1) %</mark> Largest orbital number in energy_pop |  |  |  |  |  |  |  |  |  |
| 22 -                                                                                              | n_Orbital=numel(energy_pop(:,1)) % Number of orbitals                        |  |  |  |  |  |  |  |  |  |
| 23                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 24                                                                                                | % Finde the "HOMO" in energy_pop                                             |  |  |  |  |  |  |  |  |  |
| 25 -                                                                                              | <pre>for i=1:n_Orbital</pre>                                                 |  |  |  |  |  |  |  |  |  |
| 26 -                                                                                              | <pre>if energy_pop(i,3)&lt;0.5</pre>                                         |  |  |  |  |  |  |  |  |  |
| 27 -                                                                                              | HOMO <mark>=</mark> energy_pop(i-1,1)                                        |  |  |  |  |  |  |  |  |  |
| 28 -                                                                                              | break                                                                        |  |  |  |  |  |  |  |  |  |
| 29 -                                                                                              | end                                                                          |  |  |  |  |  |  |  |  |  |
| 30                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
| 31 -                                                                                              | <sup>L</sup> end                                                             |  |  |  |  |  |  |  |  |  |
| 32                                                                                                |                                                                              |  |  |  |  |  |  |  |  |  |
|                                                                                                   |                                                                              |  |  |  |  |  |  |  |  |  |

E:\PhD Papers\9\_MD\_DFT\Results\PM6\COUPLINGS\energy\_pop - Notepad++ File Edit Search View Encoding Language Settings Tools Macro Run ]; 🚽 🗄 🖻 🕞 🕼 🎒 🔏 🐚 🖿 ( 🗢 🖕 ) 🔍 🔍 🖫 🚰 VASP Commends.txt 🔀 🔚 energy\_pop 🔀 1242 -2.0024 2.00000 4 5 1243 -1.9964 2.00000 6 1244 -1.9858 2.00000 1245 -1.9810 2.00000 8 -1.95402.00000 1246 9 1247 -1.9438 2.00000 -1.93132.00000 1248 1249 -1.9202 2.00000 1250 -1.8989 2.00000 1251 -1.8818 2.00000 14 -1.8572 1252 2.00000 15 1253 -1.8537 2.00000 -1.7728 16 1254 2.00000 17 1255 -1.7183 2.00000 -1.6238 18 1256 2.00000 19 1257 -1.5502 2.00000 20 1258 -1.54682.00000 21 1259 -1.4835 2.00000 1260 -1.47752.00000 23 1261 -1.44722.00000 24 -1.3816 2.00000 1262 25 1263 -1.3042 2.00000 26 1264 -1.2625 2.00000 27 1265 -1.1599 2.00000 28 -1.1378 2.00000 1266 29 -1.0200 2.00000 1267 -1.00572.00000 1268 31 1269 -0.9160 2.00000 32 1270 0.2874 0.00000 1271 0.3649 0.00000 34 0.3715 1272 0.00000 0.4277 1273 0.00000 0.4535 36 1274 0.00000 1275 0.5102 0.00000 1276 0.5503 0.00000 39 1277 0.5834 0.00000 40 1278 0.6428 0.00000 41 1279 0.6553 0.00000 42 1280 0.6869 0.00000 43 0.7273 1281 0.00000 44 1282 1.0196 0.00000 45 1283 1.0484 0.00000 46 1284 1.0674 0.00000 47 1285 1.1233 0.00000

Normal text file

• Execute the Matlab file:

□ In Matlab directory we should have:

✓ energy\_pop

✓ correlation\_v3d\_full\_revised\_summer2021.m

✓ coupling.xxx files

- "RRR" file will be generated in your current directory at the end of calculations (this file include Redfield tensor):
- This procedure (Matlab code) used all couplings files as input and provide RRR file as an output.

| Tel/PhD Papers/9_MD_DFT/Results/PM6/COUPLINGS/RRR - Notepad++ -                   |                                |                                |                                |                                |                                |                                |               |                                |                                |               |                                | — ť                            | J X                            |                                |                                |                                |          |
|-----------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------|--------------------------------|--------------------------------|---------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------|
| Elle Edit Search View Encoding Language Settings Tools Macro Run Plugins Window 2 |                                |                                |                                |                                |                                |                                |               |                                |                                |               |                                |                                | х                              |                                |                                |                                |          |
| 2 2 2 2 3 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2                                           |                                |                                |                                |                                |                                |                                |               |                                |                                |               |                                |                                |                                |                                |                                |                                |          |
| VASP Commendated II HERR II                                                       |                                |                                |                                |                                |                                |                                |               |                                |                                |               |                                |                                |                                |                                |                                |                                |          |
| 1                                                                                 | 0.0000000e+00                  | 1.9463638e-02                  | 3 2112784e-03                  | 5 7332320e-04                  | 2 5533807e-04                  | 1 29392778-04                  | 6 7135600e-05 | 4 2388584e-05                  | 3 8576918e-05                  | 2 4985113e-05 | 2 5590425e-05                  | 2 8726228e-05                  | 2 3943201e-05                  | 1 15006368-05                  | 2 0336616e-05                  | 1 4936018e-05                  | 1.835541 |
| 2                                                                                 | 1.9463638e-02                  | 0.0000000e+00                  | 2.0779410e-02                  | 3.7965979e-03                  | 8.1825230e-04                  | 2.4865501e-04                  | 1.1998330e-04 | 7.4620766e-05                  | 4.1139679e-05                  | 3.2573899e-05 | 1.9319770e-05                  | 3.2323881e-05                  | 1.4800031e-05                  | 1.7111485e-05                  | 1.0901536e-05                  | 1.8919890e-05                  | 1.27352( |
| 3                                                                                 | 3.2112784e-03                  | 2.0779410e-02                  | 0.000000e+00                   | 2.0514274e-02                  | 3.2575256e-03                  | 9.4428541e-04                  | 2.5687527e-04 | 1.1696405e-04                  | 7.5452263e-05                  | 5.0477411e-05 | 2.8254164e-05                  | 2.3339032e-05                  | 1.5522269e-05                  | 1.6889351e-05                  | 1.5982226e-05                  | 9.3286352e-06                  | 1.489938 |
| 4                                                                                 | 5.7332320e-04                  | 3.7965979e-03                  | 2.0514274e-02                  | 0.0000000e+00                  | 1.7616637e-02                  | 2.1796318e-03                  | 5.4139699e-04 | 2.5043562e-04                  | 1.3936222e-04                  | 5.4713314e-05 | 5.9581203e-05                  | 6.3079982e-05                  | 2.2929513e-05                  | 1.5111115e-05                  | 1.4162460e-05                  | 2.0749348e-05                  | 1.103819 |
| 6                                                                                 | 2.5555507e=04<br>1.2939277e=04 | 2 4865501e-04                  | 9 4428541e-04                  | 2 1796318e=03                  | 1 9251671e-02                  | 0.0000000e+00                  | 2 1377844e=02 | 3 2486339e-03                  | 9 2177829e-04                  | 3 3144914e-04 | 1 2702209e=04                  | 3 8841596e-05                  | 3 5882908e-05                  | 2.0551691e=05                  | 1.5148242e=05                  | 1.2020700e-05                  | 1.396950 |
| 7                                                                                 | 6.7135600e-05                  | 1.1998330e-04                  | 2.5687527e-04                  | 5.4139699e-04                  | 3.5710336e-03                  | 2.1377844e-02                  | 0.0000000e+00 | 1.7434599e-02                  | 3.5625675e-03                  | 7.0175316e-04 | 1.4779156e-04                  | 7.8088119e-05                  | 5.2376972e-05                  | 3.2497361e-05                  | 2.4545127e-05                  | 2.3055756e-05                  | 1.16448: |
| 8                                                                                 | 4.2388584e-05                  | 7.4620766e-05                  | 1.1696405e-04                  | 2.5043562e-04                  | 6.1675748e-04                  | 3.2486339e-03                  | 1.7434599e-02 | 0.0000000e+00                  | 1.7644789e-02                  | 3.0370397e-03 | 3.5304129e-04                  | 1.8011513e-04                  | 6.9889380e-05                  | 4.3712114e-05                  | 5.1189010e-05                  | 1.5575146e-05                  | 6.34675  |
| 9                                                                                 | 3.8576918e-05                  | 4.1139679e-05                  | 7.5452263e-05                  | 1.3936222e-04                  | 3.5712916e-04                  | 9.2177829e-04                  | 3.5625675e-03 | 1.7644789e-02                  | 0.000000e+00                   | 1.6813804e-02 | 1.9466478e-03                  | 6.3945152e-04                  | 1.4342852e-04                  | 1.1213520e-04                  | 4.3971786e-05                  | 3.3500119e-05                  | 6.91945! |
| 10                                                                                | 2.4985113e-05                  | 3.2573899e-05                  | 5.0477411e-05                  | 5.4713314e-05                  | 1.2879299e-04                  | 3.3144914e-04                  | 7.0175316e-04 | 3.0370397e-03                  | 1.6813804e-02                  | 0.000000e+00  | 1.6655841e-02                  | 1.7642280e-03                  | 7.0754954e-04                  | 9.9464903e-05                  | 5.7267839e-05                  | 3.0816854e-05                  | 1.053438 |
| 12                                                                                | 2.8726228e-05                  | 3.2323881e-05                  | 2.3339032e-05                  | 6.3079982e-05                  | 5.2382074e-05                  | 3.8841596e-05                  | 7.8088119e-05 | 1.8011513e-04                  | 6.3945152e-04                  | 1.7642280e-03 | 1.7645566e-02                  | 0.0000000e+00                  | 1.4178773e-02                  | 3.2415206e-03                  | 4.5611178e-04                  | 1.0950799e-04                  | 1.620040 |
| 13                                                                                | 2.3943201e-05                  | 1.4800031e-05                  | 1.5522269e-05                  | 2.2929513e-05                  | 2.4442247e-05                  | 3.5882908e-05                  | 5.2376972e-05 | 6.9889380e-05                  | 1.4342852e-04                  | 7.0754954e-04 | 1.5709162e-03                  | 1.4178773e-02                  | 0.0000000e+00                  | 9.6950001e-03                  | 2.2574454e-03                  | 1.9609617e-04                  | 7.979198 |
| 14                                                                                | 1.1500636e-05                  | 1.7111485e-05                  | 1.6889351e-05                  | 1.5111115e-05                  | 1.5047869e-05                  | 2.0551691e-05                  | 3.2497361e-05 | 4.3712114e-05                  | 1.1213520e-04                  | 9.9464903e-05 | 4.9923747e-04                  | 3.2415206e-03                  | 9.6950001e-03                  | 0.000000e+00                   | 1.8337092e-02                  | 2.0605517e-03                  | 7.44265  |
| 15                                                                                | 2.0336616e-05                  | 1.0901536e-05                  | 1.5982226e-05                  | 1.4162460e-05                  | 1.3844106e-05                  | 1.5148242e-05                  | 2.4545127e-05 | 5.1189010e-05                  | 4.3971786e-05                  | 5.7267839e-05 | 1.3432011e-04                  | 4.5611178e-04                  | 2.2574454e-03                  | 1.8337092e-02                  | 0.000000e+00                   | 1.0353311e-02                  | 5.792500 |
| 16                                                                                | 1.4936018e-05                  | 1.8919890e-05                  | 9.3286352e-06                  | 2.0749348e-05                  | 1.2028788e-05                  | 1.2994719e-05                  | 2.3055756e-05 | 1.5575146e-05                  | 3.3500119e-05                  | 3.0816854e-05 | 3.7420473e-05                  | 1.0950799e-04                  | 1.9609617e-04                  | 2.0605517e-03                  | 1.0353311e-02                  | 0.0000000e+00                  | 9,980680 |
| 18                                                                                | 3.2298953e-06                  | 3.3837263e-06                  | 5.3314993e-06                  | 4.7990106e-06                  | 6.3210691e-06                  | 5.8796519e-06                  | 8.3041842e-06 | 7.7603505e-06                  | 3.1259472e-06                  | 5.2204157e-06 | 1.5086002e-05                  | 4.7644381e-06                  | 7.1095160e-06                  | 1.0645662e-05                  | 2.4700177e-05                  | 8.2911262e-05                  | 1.861782 |
| 19                                                                                | 4.4677560e-06                  | 4.7428383e-06                  | 6.0716440e-06                  | 4.7969815e-06                  | 2.9160544e-06                  | 3.8039563e-06                  | 3.8293651e-06 | 1.6562121e-05                  | 3.5038938e-06                  | 4.7117878e-06 | 8.9314510e-06                  | 4.6646346e-06                  | 6.0353538e-06                  | 2.6299824e-05                  | 2.9593053e-05                  | 1.0370181e-05                  | 2.11509: |
| 20                                                                                | 8.2462316e-06                  | 7.0966123e-06                  | 4.5734907e-06                  | 4.6477280e-06                  | 9.5999351e-06                  | 3.2526666e-06                  | 8.6831728e-06 | 4.4820783e-06                  | 2.4838929e-05                  | 6.3545159e-06 | 9.5611235e-06                  | 2.4502155e-05                  | 7.7220618e-06                  | 1.0682129e-05                  | 6.3531556e-06                  | 3.3440779e-05                  | 1.45087( |
| 21                                                                                | 1.0437568e-05                  | 6.9074988e-06                  | 5.6157108e-06                  | 1.4275410e-05                  | 5.8249460e-06                  | 5.5006381e-06                  | 4.5807318e-06 | 9.3632424e-06                  | 7.8026926e-06                  | 7.1146360e-06 | 1.1796087e-05                  | 5.5590494e-06                  | 6.6923264e-06                  | 4.1939962e-06                  | 8.1372829e-06                  | 4.9185977e-06                  | 1.21383( |
| 22                                                                                | 6 6486917e-06                  | 9.6196860e-06<br>8.4153127e-06 | 1.30104/8e-05<br>8.5363196e-06 | 9.405361/e-06<br>1.2279626e-05 | 4 8089207e-06                  | 7.7167635e-06<br>5.4330684e-06 | 7 2972302e-06 | 9.8286129e-06<br>4 1025846e-06 | 5./3/62/10-06<br>5.4281487e-06 | 4 3455844e-06 | 7 2439892e-06                  | 4.9544570e-06<br>3.7812074e-06 | 9.0391738e-06                  | 9.0771757e-06                  | 1.1142403e-05                  | 6.9313828e-06<br>1 0977574e-05 | 4.831160 |
| 24                                                                                | 6.2444242e-06                  | 6.1438612e-06                  | 4.8681486e-06                  | 5.8792543e-06                  | 8.7678542e-06                  | 7.2138141e-06                  | 8.2907925e-06 | 5.7327490e-06                  | 5.7830940e-06                  | 4.1105534e-06 | 8.2366909e-06                  | 1.3873216e-05                  | 6.2174945e-06                  | 4.0423666e-06                  | 7.1696503e-06                  | 5.3460776e-06                  | 6.880441 |
| 25                                                                                | 5.8655972e-06                  | 7.6321509e-06                  | 3.5362899e-06                  | 2.9675077e-06                  | 6.1433077e-06                  | 4.7846250e-06                  | 5.6282712e-06 | 3.9570541e-06                  | 5.8765002e-06                  | 4.2376607e-06 | 2.4747004e-06                  | 4.5219428e-06                  | 5.1167607e-06                  | 5.5696672e-06                  | 6.2923685e-06                  | 1.4057048e-05                  | 7.090332 |
| 26                                                                                | 4.2638600e-06                  | 5.3072463e-06                  | 4.5425800e-06                  | 3.2688449e-06                  | 4.0502466e-06                  | 5.7834839e-06                  | 4.1486221e-06 | 4.1876792e-06                  | 5.5460662e-06                  | 4.7365759e-06 | 3.6282032e-06                  | 2.6773280e-06                  | 5.9176402e-06                  | 3.1758993e-06                  | 3.6883302e-06                  | 1.8678232e-06                  | 2.395132 |
| 27                                                                                | 8.8550551e-06                  | 7.1359614e-06                  | 3.4555545e-06                  | 2.3442013e-06                  | 4.1691096e-06                  | 8.0756651e-06                  | 5.4315242e-06 | 5.1614649e-06                  | 4.2423411e-06                  | 2.8180069e-06 | 2.2910271e-06                  | 2.0737794e-06                  | 4.1599838e-06                  | 3.1457380e-06                  | 8.0178924e-06                  | 3.0141975e-06                  | 2.82899( |
| 28                                                                                | 2 3733644e-06                  | 4.00170928-06                  | 4.894/105e-06<br>7 4330119e-06 | 6 8677059e-06                  | 4.8089567e-06<br>4.7865868e-06 | 9.9205230e-06<br>7.2694588e-06 | 4 1318070e-06 | 5.2151/91e-06<br>7.5696361e-06 | 2.4806611e-06<br>2.4970313e-06 | 2 4141940e-06 | 2.1402420e-06<br>3.1115108e-06 | 2.3801660e-06<br>2.2756155e-06 | 2.6849503e-06<br>7.6580749e-06 | 3.614/1/80-06                  | 2.64853440-06<br>8.99012086-06 | 3.5365/558-06                  | 2.68217  |
| 30                                                                                | 5.2607595e-06                  | 4.9522101e-06                  | 2.4210290e-06                  | 3.9605548e-06                  | 7.6374119e-06                  | 4.4642042e-06                  | 3.8977742e-06 | 3.9894017e-06                  | 2.8662540e-06                  | 2.8244032e-06 | 4.2893659e-06                  | 4.2552656e-06                  | 5.1667322e-06                  | 2.6016186e-06                  | 4.4989107e-06                  | 8.7567880e-06                  | 4.142875 |
| 31                                                                                | 1.1004788e-05                  | 3.5213165e-06                  | 3.3336056e-06                  | 3.4917105e-06                  | 3.4010647e-06                  | 3.4371825e-06                  | 3.4131527e-06 | 2.5402854e-06                  | 1.8784828e-06                  | 3.0604669e-06 | 2.8334684e-06                  | 2.4689837e-06                  | 1.0267647e-06                  | 8.1942257e-07                  | 9.5625556e-07                  | 1.9814544e-06                  | 1.16817  |
| 32                                                                                | 2.4526254e-06                  | 1.8330024e-06                  | 8.0735540e-07                  | 2.1547473e-06                  | 1.1095084e-06                  | 1.0886963e-06                  | 9.5625739e-07 | 1.4993742e-06                  | 9.8760339e-07                  | 1.7920177e-06 | 9.8588018e-07                  | 2.5557047e-06                  | 1.7887063e-06                  | 2.5523874e-06                  | 2.0619102e-06                  | 1.4255467e-06                  | 1.324745 |
| 33                                                                                | 4.1312634e-06                  | 3.7836707e-06                  | 3.7288820e-06                  | 1.2726375e-06                  | 1.6594981e-06                  | 1.7676114e-06                  | 1.6546501e-06 | 2.7037644e-06                  | 1.7136732e-06                  | 1.7091996e-06 | 2.8347228e-06                  | 2.1007845e-06                  | 1.0932227e-06                  | 2.0599247e-06                  | 3.8236904e-06                  | 2.9255954e-06                  | 1.78130: |
| 35                                                                                | 5.5433301e-06                  | 2.6948357e-06                  | 3.6930593e-06                  | 2.8396574e-06                  | 3.5814943e-06                  | 5.5507881e-06                  | 2.8165173e-06 | 1.3645706e-06                  | 2.3281400e-06                  | 2.1663512e-06 | 1.3099869e-06                  | 1.5376522e-06                  | 1.3891328e-06                  | 9.8514465e-07                  | 7.9597167e-07                  | 7.6055115e-07                  | 9.94151  |
| 36                                                                                | 3.9822667e-06                  | 4.0474666e-06                  | 4.3534094e-06                  | 3.3897179e-06                  | 4.6429685e-06                  | 3.0015796e-06                  | 2.4399192e-06 | 2.1371322e-06                  | 2.5442887e-06                  | 1.9416210e-06 | 9.9496841e-07                  | 2.0668346e-06                  | 1.0037794e-06                  | 1.4840578e-06                  | 9.6541274e-07                  | 1.1044559e-06                  | 9.288138 |
| 37                                                                                | 6.0509529e-06                  | 2.9431779e-06                  | 4.4509730e-06                  | 2.5373509e-06                  | 3.1746024e-06                  | 2.7106490e-06                  | 3.8175576e-06 | 2.9391917e-06                  | 2.6838691e-06                  | 1.7387484e-06 | 1.6580630e-06                  | 1.2296419e-06                  | 1.5371218e-06                  | 1.9717113e-06                  | 1.2487567e-06                  | 2.0845867e-06                  | 2.918605 |
| 38                                                                                | 5.5440907e-06                  | 4.0229628e-06                  | 2.7800952e-06                  | 4.8192063e-06                  | 2.9400997e-06                  | 4.1792995e-06                  | 3.2692673e-06 | 1.3488216e-06                  | 2.6124515e-06                  | 2.1650132e-06 | 1.6266741e-06                  | 2.8571252e-06                  | 1.9641469e-06                  | 1.2283768e-06                  | 2.0086266e-06                  | 1.7421672e-06                  | 2.84742( |
| 39                                                                                | 2.5028504e-06                  | 3.6866359e-06                  | 2.5479294e-06                  | 2.6898758e-06                  | 4.5017947e-06                  | 5.5740560e-06                  | 2.9564657e-06 | 1.9830949e-06                  | 2.2993907e-06                  | 2.0318383e-06 | 2.2216657e-06                  | 7.7395876e-06                  | 1.4976571e-06                  | 1.7170732e-06                  | 8.8911119e-07                  | 2.0757859e-06                  | 3.778914 |
| 40                                                                                | 2.7352949e-06                  | 2.8348221e-06                  | 2.0532460e-06                  | 3.4636675e-06                  | 1.6731610e-06                  | 1.5472611e-06                  | 1.1584962e-06 | 9.1997588e-07                  | 1.1349158e-06                  | 2.4651255e-06 | 1.8160671e-06                  | 1.8076387e-06                  | 1.1683065e-06                  | 1.2460403e-06                  | 7.2998399e-07                  | 2.0664190e-06                  | 4.045234 |
| 42                                                                                | 1.2333056e-06                  | 3.0410433e-06                  | 1.3117947e-06                  | 1.7923143e-06                  | 1.1723447e-06                  | 1.4832220e-06                  | 2.3358352e-06 | 1.8972021e-06                  | 2.3069507e-06                  | 3.8542179e-06 | 2.9017690e-06                  | 2.9220069e-06                  | 2.9849777e-06                  | 1.5983322e-06                  | 2.1759829e-06                  | 4.5131452e-06                  | 3.189964 |
| 43                                                                                | 1.2173009e-06                  | 1.0310309e-06                  | 6.3964220e-07                  | 1.2138001e-06                  | 9.5419652e-07                  | 9.7554398e-07                  | 5.6925005e-07 | 4.7279647e-07                  | 4.6103209e-07                  | 6.4091755e-07 | 7.1171428e-07                  | 8.4930714e-07                  | 1.2366176e-06                  | 7.5993383e-07                  | 1.0779022e-06                  | 6.7219368e-07                  | 9.21715: |
| 44                                                                                | 1.1749021e-06                  | 9.8180676e-07                  | 7.0769095e-07                  | 6.5598207e-07                  | 6.8931073e-07                  | 1.0517704e-06                  | 9.2513764e-07 | 8.5580727e-07                  | 4.6012262e-07                  | 5.7707556e-07 | 7.4049218e-07                  | 7.7258634e-07                  | 8.1250371e-07                  | 8.8372864e-07                  | 7.0814422e-07                  | 5.3534779e-07                  | 6.354935 |
| 45                                                                                | 3.2350187e-06                  | 1.5481799e-06<br>7.9092227a-07 | 1.6638394e-06<br>9.0116776e-07 | 1.9935384e-06                  | 1.42029026-06                  | 2.3514577e-06                  | 7.0333702e-07 | 6.3478609e-07<br>4 1192299e-07 | 9.1361415e-07<br>1.2247679e-06 | 8.7065270e-07 | 6.9838110e-07                  | 1.2407161e-06                  | 7.4554183e-07                  | 3.9668918e-07<br>4.9726966e-07 | 4.1883227e=07<br>2.1041997e=07 | 4.0336562e-07                  | 2 104711 |
| 40                                                                                | 1.8999119e-06                  | 9.9184933e-07                  | 1.2483672e-06                  | 1.8000610e-06                  | 8.8842196e-07                  | 1.2562670e-06                  | 1.1269543e-06 | 1.2062269e-06                  | 1.6258058e-06                  | 1.5413091e-06 | 4.3587023e-07                  | 4.7234366e-07                  | 5.2098122e-07                  | 2.8007545e-07                  | 2.6902716e-07                  | 9.3661960e-07                  | 4.877328 |
| 48                                                                                | 1.9125094e-06                  | 1.5811919e-06                  | 1.5333980e-06                  | 1.4220572e-06                  | 1.2308510e-06                  | 9.3548015e-07                  | 5.8352537e-07 | 1.3327553e-06                  | 5.6815964e-07                  | 7.5748253e-07 | 4.3442186e-07                  | 5.7542954e-07                  | 2.6789353e-07                  | 2.9427155e-07                  | 1.8814532e-07                  | 1.4779179e-06                  | 5.89282' |
| 49                                                                                | 1.8746952e-06                  | 1.1516991e-06                  | 5.2841670e-07                  | 6.7575739e-07                  | 8.6748241e-07                  | 1.1335755e-06                  | 6.2093241e-07 | 6.3020083e-07                  | 4.8054355e-07                  | 6.4184322e-07 | 1.0586867e-06                  | 5.8236285e-07                  | 6.0512279e-07                  | 1.0288226e-06                  | 1.0886182e-06                  | 8.0311720e-07                  | 6.77082( |
| 50                                                                                | 8.5229696e-07                  | 1.0030036e-06                  | 6.8073697e-07                  | 1.0813925e-06                  | 1.0981303e-06                  | 1.3061471e-06                  | 9.2051733e-07 | 5.6597985e-07                  | 6.2266943e-07                  | 6.8610185e-07 | 5.1925128e-07                  | 5.2252371e-07                  | 7.6126514e-07                  | 1.4578146e-06                  | 3.2815783e-06                  | 1.1197581e-06                  | 6.35004' |
| 51                                                                                | 1.4668818e-06                  | 1.1100113e-06                  | 1.26319908-06                  | 7.5186929e-07<br>9.9994910e-07 | 7.9707067e-07                  | 8.2130454e-07<br>9.0254071e-07 | 1.1892857e-06 | 4 9204442e=07                  | 7.2925823e=07                  | 6.3135789e-07 | 4.7812733e=07                  | 4.6643108e-07                  | 3.62403566-07                  | 2.3896330e-07<br>4.9901117e-07 | 8.2289348e=07<br>9.2462941e=07 | 4.5866562e-07                  | 4.899720 |
| 53                                                                                | 1.1443800e-06                  | 5.3776552e-07                  | 9.8214130e-07                  | 1.2883245e-06                  | 5.4878639e-07                  | 5.8718623e-07                  | 6.4098619e-07 | 2.4107301e-07                  | 4.9858834e-07                  | 6.1296692e-07 | 5.8402541e-07                  | 4.7321667e-07                  | 6.4020075e-07                  | 4.5005659e-07                  | 5.8305603e-07                  | 5.6836328e-07                  | 6.057044 |
| 54                                                                                | 8.3399054e-07                  | 1.1208474e-06                  | 1.1165150e-06                  | 5.5773510e-07                  | 7.2845778e-07                  | 8.4789817e-07                  | 7.4529889e-07 | 9.4854892e-07                  | 7.6589017e-07                  | 4.5579103e-07 | 5.6386356e-07                  | 9.3011346e-07                  | 5.4823628e-07                  | 6.3035343e-07                  | 5.2558276e-07                  | 7.4789808e-07                  | 1.76779: |
| 55                                                                                | 8.4740872e-07                  | 6.8187527e-07                  | 1.1669427e-06                  | 8.7845654e-07                  | 2.5993985e-06                  | 4.2247994e-06                  | 5.9904405e-07 | 8.4202322e-07                  | 5.9171979e-07                  | 8.4590337e-07 | 8.6236845e-07                  | 8.5437509e-07                  | 6.0417544e-07                  | 3.9324946e-07                  | 3.7073099e-07                  | 5.8310776e-07                  | 7.68448; |
| 56                                                                                | 7.1885251e-07                  | 5.3517065e-07                  | 1.5225858e-06                  | 9.3005811e-07                  | 8.2336455e-07                  | 1.1728003e-06                  | 1.7800697e-06 | 8.3047299e-07                  | 1.2697011e-06                  | 1.1354884e-06 | 4.6923687e-07                  | 7.3753606e-07                  | 1.2582262e-06                  | 1.3081041e-06                  | 1.3095383e-06                  | 9.7865302e-07                  | 5.462774 |
| 57                                                                                | 6.4792231e-07                  | 1.2218200e-06                  | 1.7095059e-06                  | 1.2653702e-06                  | 1.6336623e-06                  | 2.3321939e-06                  | 1.4117215e-06 | 1.0779804e-06                  | 1.0571071e-06                  | 6.7883892e-07 | 5.2796687e-07                  | 3.7551029e-07                  | 5.8390029e-07                  | 4.5558178e-07                  | 5.9701340e-07                  | 1.6982718e-06                  | 8.165400 |
| 59                                                                                | 6.9919447e-07                  | 1.2636428e-06                  | 1.1979564e-06                  | 1.8387838e-06                  | 1.8601720e-06                  | 1.0829121e-06                  | 1.9175191e-06 | 1.1273849e-06                  | 7.9515444e-07                  | 5.8332858e-07 | 6.9887899e-07                  | 8.0599400e-07                  | 6.5398672e-07                  | 1.0793517e-06                  | 6.5656148e-07                  | 1.4907351e-06                  | 8.79020  |
| 60                                                                                | 5.5119092e-07                  | 8.9088149e-07                  | 1.0283403e-06                  | 1.5353262e-06                  | 1.7714651e-06                  | 1.2824077e-06                  | 1.1578517e-06 | 1.8757897e-06                  | 6.9809324e-07                  | 8.3082812e-07 | 1.3493808e-06                  | 8.8492706e-07                  | 6.8338241e-07                  | 8.3881388e-07                  | 8.0126041e-07                  | 6.2545913e-07                  | 4.48312  |
| 61                                                                                | 4.8826593e-07                  | 5.5942828e-07                  | 4.5296960e-07                  | 7.5088076e-07                  | 1.2871337e-06                  | 1.0945624e-06                  | 1.3749244e-06 | 1.1290067e-06                  | 1.0541707e-06                  | 9.6269887e-07 | 1.6504246e-06                  | 1.5302871e-06                  | 8.6205062e-07                  | 1.2019271e-06                  | 1.8833075e-06                  | 7.0686598e-07                  | 1.05658( |

• Code will produce the Redfield tensor elements and correlation function:



- Maximal transition probability appears near main diagonal.
- Almost zero transition probability when get away from the main diagonal
- Quite small at HOMO to LUMO transition.

• Redfield tensor elements for PM6 polymer:



• Code will produce the Redfield tensor elements and correlation function:



- Auto correlation function should decay from 1 to 0 in a certain time steps and then oscillate around 0.
- The fast decay of the correlation function justifies use of shorter trajectory.

# Redfield MATLAB Script Parameters

Tuesday June 21, 2022

Adam Flesche

# Required Input Files

- RRR (main output from correlation script)
- energy\_pop (used in correlation script)
- Red\_FIELD\_MEq\_11d\_emi6\_1f.m (MATLAB Redfield script in ~/bin/)
- forMasterOptics
- bandout

# forMasterOptics

- Syntax used in the script, initially generated as "forMasterEq" in your geometry optimization directory:
- Edit input\_overlap to contain your desired orbital interval
- Run a script: ~/bin/OS/OS\_dipol\_v3b
- Obtains forMasterEQ file
- Simply cp forMasterEQ forMasterOptics

# bandout

- Requires you to run a VASP job to obtain partial charge densities, PARCHG files
- Job run with INCAR-pc and CONTCAR from optimization
- When finished, run the integration script:
- cp ~/bin/band\_integrate\_vasp5.pl
- Edit to fit your orbital interval
- Run with perl band\_integrate\_vasp5.pl
- bandout is obtained as the output

# MATLAB Output Files

- CT
- S
- STATES
- taveHaveE



# Questions?



Unitary evolution,  
without dissipation
$$i\hbar \frac{\partial \rho}{\partial t} = [H, \rho]$$

$$\rho(t) = e^{-iHt/\hbar}\rho(0)e^{iHt/\hbar}$$
dissipative evolution
$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar}[H, \rho] - \frac{1}{\hbar^2}tr\left(\rho^{BATH}\int d\tau \left[V(t), \left[V(t+\tau), \rho(t)\right]\right]\right)$$
short-hand form
$$\frac{\partial}{\partial t}\rho = (\hat{L} + \hat{R})\rho$$
matrix elements
of density operator
$$\rho = \sum_{j} \rho_{ij}|\psi_i\rangle\langle\psi_j|$$
system of first order differential equations
for elements
$$\rho_{ij}$$
eigenvalue problem
$$(\hat{L} + \hat{R})\rho^{(\xi)} = \Omega^{(\xi)}\rho^{(\xi)}$$

$$\rho_{ij}(t) = \sum_{\xi} \left\langle \rho_{ij}^{(a,b)}(0) \middle| \rho^{(\xi)} \right\rangle \rho^{(\xi)} \exp(\Omega^{(\xi)}t)$$


## Input Parameters



| Re X                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17x17 double                                                                               | Redfield Tensor for electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 2 3 4 5 6 7 8 9 10 11                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 0 0.0192 0.0251 4.5893e 0.0015 3.0673e 2.7195e 2.4123e 1.2798e 2.4502e 3.3432e 1.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 0 0 -0.0197 0.0053 0.0010 8.8460e 4.7360e 5.325e 5.4751e 1.8005e 9.1909e 5.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4 0 0 0 -0.0171 0.0090 0.0035 0.0013 0.0013 0.0011 1.5954e 1.2986e 1.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 0 0 0 <u>0 0.0190 0.0046</u> 0.0078 0.0058 0.0034 2.9284e 2.6625e 1.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            | <pre>Efermi=energy_pop(HOMO-Omin+1)/2+energy_pop(LOMO-Omin+1)/2;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     | Fe=energy_pop(HOMO=Omin+2:Omax=Omin+1)=Efermi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 0 0 0 0 0 0 0 0 0 0 0 -12.2729                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            | Eh=Efermi-energy_pop(1:HOMO+1-Omin);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            | Re=forMF(HOMO-Omin+2:Omax-Omin+1,HOMO-Omin+2:Omax-Omin+1):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                   | <pre>Rh=forME(1:HOMO+1-Omin,1:HOMO+1-Omin);</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17 0 0 0 0 0 0 0 0 0 0 0 0 0                                                               | $0 \text{ ptic=forME}(1:HOMO+1-Omin_HOMO-Omin+2:Omax-Omin+1):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rh X                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19x19 double                                                                               | — 🔨 %enhance hole transitions up in energy, disable thermal excitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 2 3 4 5 6 7 8 9 10 11<br>1 2 3 4 5 6 7 8 9 10 11                                         | for $i=1:1:$ for $i=1:HOMO+1-Omin:if Eh(i)>Eh(i) Rh(i,i)=0: end:end:end:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 -0.0181 0.0025 0.0099 7.5284e 9.8307e 3.4980e 4.8575e 7.5899e 1.7284e 1.1368e 9.8725e 3. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4 0 0 0 -0.0218 0.0041 0.0088 5.7140e 0.0019 5.3630e 0.0011 0.0010 2.                      | TOr 1=2:HUMU+1-Umln;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 / 0 0 0 0 0 0.0012 0.0022 0.0010 8.6223e                                                 | for j=1:HOMO+1-Omin;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6 0 0 0 0 <del>0 2.3920</del> 0.0062 0.0105 0.0073 0.0150 0.0080                           | % if Eh(i)>Eh(i) Rh(i,j)=-Rh(i,j)*(exp(-(Eh(i)-Eh(j))/kT)); end;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 0 0 0 0 0 0 0 0 -4.1256 2.2827 0.0481 0.0302 0.0054                                      | if $Eh(i) > Eh(i) = 0$ end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                            | $= \frac{1}{2} $ |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     | $\delta RI(1, J) = RI(1, J) * (exp(-(EI(1) - EI(J))/(RI)) - 1). (-1);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 0 0 0 0 0 0 0 0 0 0 0 -3.9637                                                            | Rh(1,1)=0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                            | Gh(i-1)=Gh(i-1)-Rh(i,j);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                            | $\Re$ Rh(i,i)=Gh(i):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            | ena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Redfield lensor for holes                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                            | Section master equation coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            | for $i=1$ (may UOMO $i$ De $(i - i) - Ce(i)$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                            | $101^{\circ} 1=1:0$ max-HUMU; Ke(1,1)=Ge(1); end;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                            | <pre>for i=1:HOMO+1-Omin;Rh(i,i)=Gh(i);end;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



$$\begin{split} &(\hat{L}+\hat{R})\rho^{\nu} = \Omega\rho^{\nu}\\ &\rho_{\sigma,ij}(t) = \sum_{\xi} \left\langle \rho_{\sigma,ij}^{(a,b)}(0) \left| \rho_{\sigma}^{(\xi)} \right\rangle \rho_{\sigma}^{(\xi)} \exp(\Omega_{\sigma}^{(\xi)}t) \right.\\ &\rho = \sum_{\xi} p_{j} |\psi_{j}\rangle \langle \psi_{j}|\\ &i\hbar \frac{\partial \rho}{\partial t} = [H,\rho]\\ &\rho(t) = e^{-iHt/\hbar}\rho(0)e^{iHt/\hbar} \end{split}$$



























# Converting Populations of Each Orbital Into a Distribution Over Time & Spatial Position

Computational Chemistry Skills 6/21/2022 Hadassah B. Griffin

## Overview

- Redfield Tensor Calculations Completed
- Calculating Electron Dissipative Dynamics from Redfield Equations of Motion
- Matlab script used for code and images that follow: Red\_FIELD\_MEq\_11d\_emi6\_1f
  - Model included: example from group email
- Skill: visualize how populations of each orbital change over time/in space
- Applications include: charge transfer

# Key Variables of Interest

- PPe: list of the populations of electron states (i.e., the orbitals) *i* at time *t*; depends on HOMO and max occupation level (Omax)
- Be: spatial distribution of electrons, and the occupation of electron orbitals over time; built from "bandout" file data and HOMO, Omin, Omax variable information
- WPe: (PPe X Be): a product of variables PPe and Be, which will help us analyze how population of orbitals changes over time and in space

```
321
322
WPe=(((PPe(:,:)'*Be)'));
```



# Visualization of PPe, <mark>Be</mark>, Wpe (<mark>skewed view</mark>, top-down view; all waterfall plots)









## WPe In Code---Steps to Final Visualization

#### Normalization

| 333 | <pre>transfer=(sum(WPe(1:36,:)));</pre>        |
|-----|------------------------------------------------|
| 334 | norm=sum(WPe);                                 |
| 335 | plot(transfer)                                 |
| 336 | plot(norm)                                     |
| 337 | <pre>plot(transfer.*norm);</pre>               |
| 338 | <pre>plot(transfer.*norm.^(-1));</pre>         |
| 339 | <pre>CT=[time' (transfer.*norm.^(-1))'];</pre> |
| 340 | save CT CT -ASCII                              |
| 341 |                                                |
| 242 | -STEDS-1000                                    |

### Extract Electron Data as WWPe

```
343 Zgrid=1:zSTEPS;
344 Zzgrid=min(Zz)+(max(Zz)-min(Zz))*Zgrid/zSTEPS;
345 slice1=zeros(size(Zgrid));
346 WWPe=slice1';
347 ZWidth=Zz(2)-Zz(1);
348 - for i=1:timeSTEPS;
```

### Extract Hole Data as WWPh

| 356 | %wavepacket in space for holes        |
|-----|---------------------------------------|
| 357 | <pre>slice1=zeros(size(Zgrid));</pre> |
| 358 | WWPh=slice1';                         |
| 359 | ZWidth=Zz(2)-Zz(1);                   |
| 360 | <pre>for i=1:timeSTEPS;</pre>         |

### Plot Data

372 373 374

379 380

381

382

383

384

385

| <pre>mesh(log10(time1),Zzgrid,WWPe);axis([-3.05 2.7 -Zzgrid(end) Zzgrid(end)]);view(2)</pre>      |
|---------------------------------------------------------------------------------------------------|
| title('electrons')                                                                                |
| <pre>xlabel('log_1_0(time/1ps)');</pre>                                                           |
| ylabel('position, Z, Angstrom');                                                                  |
| figure;                                                                                           |
| mesh(log10(time1),Zzgrid,WWPh);axis([-3.05 2.7 -Zzgrid(end) Zzgrid(end)]);view(2)                 |
| title('holes')                                                                                    |
| <pre>xlabel('log_1_0(time/1ps)');</pre>                                                           |
| ylabel('position, Z, Angstrom');                                                                  |
| figure                                                                                            |
| <pre>mesh(log10(time1),Zzgrid,WWPe-WWPh);axis([-3.05 2.7 -Zzgrid(end) Zzgrid(end)]);view(2)</pre> |
| <pre>xlabel('log_1_0(time/1ps)');</pre>                                                           |
| ylabel('position, Z, Angstrom');                                                                  |
| title('electrons-holes')                                                                          |

## Final Visualization and Interpretation



- Brighter values: electron locations
- Darker values: hole locations
- Neutral/O values: charge density matches same value as ground state before and after excitation
- Charge transfer evidence from seeing if electron/hole locations change over time

(Relaxation dynamics and distribution of charge as a function of energy and time)

Nonadiabatic couplings without spin • Purpose of this methodology?





#### Nonadiabatic couplings without spin • Purpose of this methodology?





- What do we need to start the visualization:
- **RRR** file, was calculated before from the coupling files:
- □ The "energy\_pop" file.
- The range of orbitals the you specified in the "energy\_pop" file should be consistent through all of your calculations such as bandout and Red field tensor calculations

|         |                    |                            | A Lo o Let T  |
|---------|--------------------|----------------------------|---------------|
| 3 🖻 🗎   |                    | 4 h h k 2 C h              | 🎭   👒 👒   🖷 🖼 |
| LOCPOT. | trim 🗵 🔚 Dmitri_Su | iggestions.txt 🗷 🔚 new 1 🗵 |               |
| 65      | 444                | -5.6964                    | 2.00000       |
| 66      | 445                | -5.6872                    | 2.00000       |
| 67      | 446                | -5.6554                    | 2.00000       |
| 68      | 447                | -5.6489                    | 2.00000       |
| 69      | 448                | -5.6107                    | 2.00000       |
| 70      | 449                | -5.5346                    | 2.00000       |
| 71      | 450                | -5.5298                    | 2.00000       |
| 72      | 451                | -5.4682                    | 2.00000       |
| 73      | 452                | -5.4210                    | 2.00000       |
| 74      | 453                | -5.3776                    | 2.00000       |
| 75      | 454                | -5.3135                    | 2.00000       |
| /6      | 455                | -5.2667                    | 2.00000       |
| //      | 456                | -5.2362                    | 2.00000       |
| 78      | 457                | -5.0748                    | 2.00000       |
| 19      | 458                | -5.0501                    | 2.00000       |
| 80      | 459                | -5.0115                    | 2.00000       |
| 01      | 460                | -4.0727                    | 2.00000       |
| 02      | 461                | -4.0000                    | 2.00000       |
| 0.0     | 462                | -4.6154                    | 2.00000       |
| 85      | 403                | -4.5530                    | 2.00000       |
| 86      | 465                | -1 1895                    | 2.00000       |
| 87      | 465                | -1 3596                    | 2.00000       |
| 88      | 467                | -4 2957                    | 2.00000       |
| 89      | 468                | -4.0744                    | 2.00000       |
| 90      | 469                | -3.5800                    | 2.00000       |
| 91      | 470                | -3.0132                    | 0.00000       |
| 92      | 471                | -2.9515                    | 0.00000       |
| 93      | 472                | -2.8815                    | 0.00000       |
| 94      | 473                | -2.8314                    | 0.00000       |
| 95      | 474                | -2.3176                    | 0.00000       |
| 96      | 475                | -2.1178                    | 0.00000       |
| 97      | 476                | -2.0348                    | 0.00000       |
| 98      | 477                | -1.8460                    | 0.00000       |
| 99      | 478                | -1.7498                    | 0.00000       |
| 100     | 479                | -1.4869                    | 0.00000       |
| 101     | 480                | -1.4360                    | 0.00000       |
| 102     | 481                | -1.3345                    | 0.00000       |
| 103     | 482                | -1.1231                    | 0.00000       |
| 104     | 483                | -0.9385                    | 0.00000       |
| 105     | 484                | -0.9321                    | 0.00000       |
| 106     | 485                | -0.8578                    | 0.00000       |
| 107     | 486                | -0.7973                    | 0.00000       |
| 108     | 487                | -0.7571                    | 0.0000        |

- What do we need to start calculations:
- □ forMasterOptics and bandout?
- □ First we need to do partial charge calculations



• What do we need to start the visualization:

#### □ INCAR file settings:

| LPARD=TRUE                                                           | # evaluates partial decomposed charge densities                                                                                                                                                                           |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # Other Paramete:                                                    | rs                                                                                                                                                                                                                        |
| LSEPB=TRUE<br>NBANDS=256                                             | # charge density is calculated for every band separately<br>#number of bands in calculation                                                                                                                               |
| # Electronic rela                                                    | axation                                                                                                                                                                                                                   |
| ISMEAR=0<br>PREC=Low<br>LREAL=.FALSE.<br>ISYM = 0<br>EDIFF=0.0001 #1 | <pre>#partial occupencies of wavefunction have Gaussian smearing #low;med;high #projection done in reciprocal space #symmetry not considered in calculation minimum energy difference between electronic iterations</pre> |
| # Ionic Relaxatio                                                    | on                                                                                                                                                                                                                        |
| IBRION=2<br>NSW=0<br>POTIM= .5<br>EDIFFG=-0.001 #m                   | #conjugate-gradient algorithm used to relax ions (bad<br>#number of ionic steps<br>#time step in fs<br>inimum energy difference between ionic iterations                                                                  |
| EINT= -5.9 -0.6<br>LVTOT = .TRUE                                     | A range to cover energy_pop                                                                                                                                                                                               |

- What do we need to start calculations:
- □ forMasterOptics and bandout?
- cp ~/bin/band\_integrate\_vasp5.pl .
- vi band\_integrate\_vasp5.pl
- perl band\_integrate\_vasp5.pl (at the end of this step, partial charge files PARCHG.xxx.ALLK will be generated for selected orbitals). The bandout file will be generated here.
- module swap PrgEnv-intel PrgEnv-gnu
- ~/bin/osc\_str\_CHEM676.exe
- cp forMasterEq forMasterOptics

499 0.0733 0.00000 kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676 2020/Amir/ kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676 2020/Amir/ eval '(exit \$?0)' && eval 'exec perl -S \$0 \${1+"\$@"}' && eval #;-\*- Perl -\*-\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* this script integrates the CHG file along a single axis \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* # Designate output files open (OUT2, ">bandout"); \$fila="PARCHG.0"; \$filc=".ALLK"; for (\$numb=270;\$numb<271;\$numb++) { A range to cover for (\$numb=440;\$numb<500;\$numb++) {</pre> energy\_pop! # Setting up file names \$filb=\$numb; if (\$numb <= 9) {\$numb1="00" . \$numb}; if (\$numb <= 99) {\$numb1="0" . \$numb}; if  $(\text{Snumb} \ge 100)$  {Snumb1= \$numb};

• Double check the size of input files.

kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676\_2020/Amir/PROJECT\_PC/FOLLOWUP/DPP\_PCBM/MD/BANDOUTS> wc\_energy\_pop 60\_180\_2040\_energy\_pop kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676\_2020/Amir/PROJECT\_PC/FOLLOWUP/DPP\_PCBM/MD/BANDOUTS> wc\_forMasterOptics 60\_3600\_93660\_forMasterOptics kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676\_2020/Amir/PROJECT\_PC/FOLLOWUP/DPP\_PCBM/MD/BANDOUTS> wc\_bandout 60\_8556\_144596\_bandout kilin@cori09:/global/cfs/cdirs/m1251/vasp/CHEM676\_2020/Amir/PROJECT\_PC/FOLLOWUP/DPP\_PCBM/MD/BANDOUTS>

- Bandout file contains the same information as "PARCHG.xxx.ALLK".
- They are results of integration of each 3D PARCHG over X and Y.

• Execute the Matlab file:

□ In Matlab directory we should have:

✓ RRR

- ✓ energy\_pop
- ✓ bandout
- ✓ forMasterOptics
- ✓ RATE\_Red\_FIELD\_MEq\_11d\_emi6\_1g\_version\_Summer\_2022.m

- Run the Matlab codes to calculate relaxation dynamics
- Matlab script "Red\_FIELD\_MEq\_11d\_emi6\_1f.m" or "RATE\_Red\_FIELD\_MEq\_11d\_emi6\_1g\_version\_Summer\_2022.m":



Select the initial transition based on the highest value of oscillator strength in "OS\_STRENGTH" file.

| 469 | 473 | 1.91527228 | 0.8130 | 2.0000 | 0.0000 | 1.3194  | -5.0524 | 2.1741  |
|-----|-----|------------|--------|--------|--------|---------|---------|---------|
| 466 | 472 | 0.97081346 | 1.7198 | 2.0000 | 0.0000 | 0.0884  | -0.0163 | 0.0066  |
| 461 | 477 | 0.76628863 | 2.9368 | 2.0000 | 0.0000 | 0.3738  | 0.1459  | 1.8395  |
| 461 | 470 | 0.68394278 | 1.8236 | 2.0000 | 0.0000 | 0.0351  | -0.1257 | 0.0351  |
| 465 | 473 | 0.64480920 | 1.8338 | 2.0000 | 0.0000 | 0.2551  | -2.1116 | 0.4652  |
| 463 | 470 | 0.53752501 | 1.6081 | 2.0000 | 0.0000 | -0.0261 | 0.0053  | -0.0044 |
| 464 | 475 | 0.38692201 | 2.6863 | 2.0000 | 0.0000 | 0.3729  | -0.9177 | 0.9892  |
| 462 | 477 | 0.36538379 | 2.7533 | 2.0000 | 0.0000 | 0.6288  | -1.0864 | 0.4786  |
| 464 | 486 | 0.31370063 | 3.7817 | 2.0000 | 0.0000 | 0.3333  | 0.3495  | 0.9460  |
| 462 | 483 | 0.30301199 | 3.6694 | 2.0000 | 0.0000 | 0.2600  | -0.2312 | 0.9992  |
| 467 | 473 | 0.24945212 | 1.6429 | 2.0000 | 0.0000 | 0.0224  | 0.0971  | 0.0670  |
| 461 | 472 | 0.24211756 | 2.0779 | 2.0000 | 0.0000 | 0.0287  | 0.7621  | -0.9976 |
| 467 | 476 | 0.23115498 | 2.4617 | 2.0000 | 0.0000 | 0.1142  | -1.0746 | 0.2959  |
| 462 | 470 | 0.21720914 | 1.6401 | 2.0000 | 0.0000 | -0.0030 | 0.0136  | -0.0201 |
| 462 | 471 | 0.19433876 | 1.6730 | 2.0000 | 0.0000 | -0.0415 | 0.0622  | 0.1201  |
| 463 | 478 | 0.18837127 | 2.9420 | 2.0000 | 0.0000 | -0.0708 | -0.3985 | -0.8285 |
| 456 | 474 | 0.18720686 | 3.0022 | 2.0000 | 0.0000 | -0.0876 | 0.8248  | -0.2690 |
| 450 | 470 | 0.18093864 | 2.4745 | 2.0000 | 0.0000 | -0.0456 | -0.5001 | -0.8259 |
| 466 | 482 | 0.17789103 | 3.4518 | 2.0000 | 0.0000 | -0.0882 | -0.0493 | 0.0180  |
| 461 | 487 | 0.17546004 | 4.0256 | 2.0000 | 0.0000 | -0.1806 | 0.2082  | -0.7175 |
| 451 | 488 | 0.17072121 | 4.8583 | 2.0000 | 0.0000 | 0.1753  | -0.1211 | 0.6494  |
| 461 | 478 | 0.16601288 | 3.1575 | 2.0000 | 0.0000 | 0.0529  | 0.6472  | -0.5396 |
| 463 | 483 | 0.15776397 | 3.6374 | 2.0000 | 0.0000 | -0.2317 | -0.2672 | -0.5788 |
| 466 | 477 | 0.15405094 | 2.5787 | 2.0000 | 0.0000 | 0.8205  | 0.0202  | -0.0902 |
| 466 | 471 | 0.15251968 | 1.4984 | 2.0000 | 0.0000 | -0.1396 | 0.0411  | -0.0340 |
| 465 | 471 | 0.15241437 | 1.5988 | 2.0000 | 0.0000 | -0.1791 | -0.1695 | 0.4012  |
| 461 | 479 | 0.15013712 | 3.3800 | 2.0000 | 0.0000 | 0.5738  | 0.2622  | -0.0005 |
| 466 | 485 | 0.14982642 | 3.6184 | 2.0000 | 0.0000 | 0.0925  | -0.3608 | 0.6502  |
| 463 | 477 | 0.14068938 | 2.7213 | 2.0000 | 0.0000 | -0.5817 | 0.3108  | -0.5179 |
| 450 | 488 | 0.13521664 | 4.8728 | 2.0000 | 0.0000 | -0.1755 | 0.0805  | -0.5588 |
| 454 | 474 | 0.12934594 | 3.0241 | 2.0000 | 0.0000 | -0.0065 | -0.7356 | 0.1480  |
| 468 | 476 | 0.12540796 | 2.0155 | 2.0000 | 0.0000 | 0.0809  | -0.0604 | -0.0400 |
|     |     |            |        |        |        |         |         |         |

After finished the simulations, you should be able to see rate of electron and hole relaxation in the command window:



• Code will produce the Relaxation dynamics and distribution of charge as a function of energy and time:



| 📣 MATLAB R2    | 020a - academic use              |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
|----------------|----------------------------------|---------------------------------|-------------------|-------------|--------------------|---------------------------------|------------------|--------------------|---------------|-----------------------------------------|
| HOME           | PLOTS                            | APPS                            | EDITOR            |             | PUBLISH            | i vi                            | EW               |                    |               |                                         |
| 🕂 🕒            | Find Files                       |                                 | Insert<br>Comment | 🔜 fx<br>% % | <b>≓</b> ⊊ ▼<br>%⊐ | 00                              | $\triangleright$ | R                  | 🔌 Run Section | الله الله الله الله الله الله الله الله |
| New Open       | Save Print V                     | ⊖ Find ▼                        | Indent            |             |                    | Breakpoints                     | Run              | Run and<br>Advance | 🛃 Advance     | Run and<br>Time                         |
|                | FILE                             | NAVIGATE                        | E                 | EDIT        | 11.3T              | BREAKPOINTS                     |                  | Advance            | RUN           |                                         |
| 🗢 🌩 🖬 🔓        | 🕽 💭 📙 🕨 E: 🕨 PhD                 | Papers + 8_DF                   | T_CP_Abinitio     | ► DPP       | _РСВМ              | <ul> <li>Relaxations</li> </ul> | •                |                    |               |                                         |
| Z Editor - E:\ | PhD Papers\8_DFT_CP_A            | lbinitio\DPP_PCB                | M\Relaxation:     | s\RATE_     | Red_FIEL           | .D_MEq_11d_er                   | ni6_1g_ver       | sion_Summ          | er_2022.m*    |                                         |
| RATE_Red       | _FIELD_MEq_11d_emi6_<br>aveZH(1) | 1g_version_Sumr<br>= (WWPh (: . | ner_2022.m*       | arid        | /noi               | cmZH;                           |                  |                    |               |                                         |
| 419 -          | end                              | (                               | -,,               | <b>J</b>    | ,                  |                                 |                  |                    |               |                                         |
| 420            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 421 -          | WWPehMAX=max                     | (max(WWPe                       | e-WWPh))          | ;           |                    |                                 |                  |                    |               |                                         |
| 422 -          | figure                           |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 423 -          | mesh(log10(t                     | 2 7 -7700                       | grid,WWP          | e-WW        | Ph);               | and) 1) • m                     | iow(2)           |                    |               |                                         |
| 425 -          | hold on;                         | 2.7 -2291                       | . ra (ena)        | 229         | 110(6              | siid)] <b>)</b> , V.            | 160(2)           | ,                  |               |                                         |
| 426 -          | plot3(log10)                     | time1),[a                       | veZE 0]           | ,WWP        | ehMAX              | (*ones (s                       | ize(ti           | .me1)),            | 'k','Lin      | neWidth',3);                            |
| 427 -          | plot3(log10(                     | time1),[a                       | aveZH 0]          | ,WWP        | ehMAX              | (*ones (s                       | ize(ti           | .mel)),            | 'k-','Line    | Width',3);                              |
| 428 -          | view(2)                          |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 429            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 430 -          | xlabel('log_                     | 1_0(time/                       | 'lps)' <b>);</b>  |             |                    |                                 |                  |                    |               |                                         |
| 432 -          | xlim([-3, 2, 2])                 | (A) );                          |                   |             |                    |                                 |                  |                    |               |                                         |
| 433            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 434            | <pre>% title('ele</pre>          | ctrons-ho                       | les')             |             |                    |                                 |                  |                    |               |                                         |
| 435 -          | figure;                          |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 436 -          | plot(log10(t                     | imel),[av                       | reZE-ave          | ZH 0        | ])                 |                                 |                  |                    |               |                                         |
| 437 -          | xlabel('log_                     | 1_0(time/                       | (lps)' <b>);</b>  |             |                    |                                 |                  |                    |               |                                         |
| 438 -          | xlim([-3, 2, 2])                 | 10, 2-011<br>(51)               | (A) );            |             |                    |                                 |                  |                    |               |                                         |
| 440            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 441            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 442 -          | figure                           |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| 443 -          | dx_rate = di                     | ff(log10                        | (time1))          | 1           |                    |                                 |                  |                    |               |                                         |
| 444 -          | dy_rate = di                     | .ff([aveZE                      | -aveZH            | 0]);        |                    |                                 |                  |                    |               |                                         |
| 446 -          | d rate=dv ra                     | te /dx ra                       | te:               |             |                    |                                 |                  |                    |               |                                         |
| 447            | 100 uy_18                        |                                 | ,                 |             |                    |                                 |                  |                    |               |                                         |
| 448 -          | plot(log10(t                     | ime1),[d_                       | rate 0]           | )           |                    |                                 |                  |                    |               |                                         |
| 449 -          | xlim([-3 2.2                     | :5])                            |                   |             |                    |                                 |                  |                    |               |                                         |
| 450 -          | <pre>xlabel('log_</pre>          | 1_0(time/                       | 1ps)');           |             |                    |                                 |                  |                    |               |                                         |
| 451 -          | ylabel('Curr                     | ent densi                       | lty j(t)          | ');         |                    |                                 |                  |                    |               |                                         |
| 452            | % title('Slo                     | pe')                            |                   |             |                    |                                 |                  |                    |               |                                         |
| 454            |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
| +              |                                  |                                 |                   |             |                    |                                 |                  |                    |               |                                         |
|                |                                  |                                 |                   | _           |                    |                                 |                  |                    |               |                                         |





# non-fullerene acceptor

ect

0



# Photoluminescence

William Tupa

# Absorption vs Emission

- Absorption: Matter takes in a photon to then move an electron to a higher energy level.
- Spontaneous Emission: Matter releases a photon to drop a photon to a lower energy level.
- Stimulated Emission: Same as spontaneous emission but now this happens when the matter when a photon goes by it. The two photons have the same direction, frequency and polarization.



## Einstein Coefficients

- Measure how likely a photon is will be absorbed or emitted from an atom.
- $A_{xy}$  would be the spontaneous emission probability of a transition from level x to level y.
- $B_{xy}$  would be the absorption or spontaneous emission probability of a transition from level x to level y.
- $g_{\chi}$  is the degeneracy of level x.
- $f_{xy}$  is the oscillator strength.

$$B_{12} = \frac{e^2}{4\epsilon_0 m_e h\nu} f_{12}$$

$$B_{21} = \frac{e^2}{4\epsilon_0 m_e h\nu} \frac{g_1}{g_2} f_{12}$$

$$A_{21} = \frac{2\pi\nu^2 e^2 g_1}{\epsilon_0 m_e c^3 g_2} f_{12}$$

| Continuous Spectrum                 |   |
|-------------------------------------|---|
|                                     |   |
| Emission Lines                      |   |
|                                     |   |
| Absorption Lines                    |   |
|                                     |   |
| Emission lines and absorption lines | 5 |
| compared to a continuous spectrum   |   |
Why the PL module of the Redfield code has a cycle over timesteps?



#### **Electronic Dynamic**

changing initial conditions of electron dynamics by tags iE and iH
 how to find rates of electron and hole relaxation for each iE, iH

#### **Needed Files**

Script Name: Red\_FIELD\_MEq\_11d\_emi6\_1f.m Input Files -Input\_overlap Energy\_pop, forMasteroptic RRR Bandout (std) / Bandout2D (ncl) Outputs – Excited state relaxation in energy and space domains Rates of relaxation from HO-x to HO and LU+y to LU

| 4  |                                                     |
|----|-----------------------------------------------------|
| 5  | <pre>timeSTEPS=600;</pre>                           |
| 6  |                                                     |
| 7  | iH=5;%12;%22;%31;%3;%14;%8;%11;%3;%22;%14;%8;%19;%8 |
| 8  | %initial hole                                       |
| 9  | iE=5;%8;%2;%4;%3;%5;%3;%8;%3                        |
| 10 | %initial electron                                   |
| 11 | H0M0=472                                            |
| 12 | LUM0=H0M0+1                                         |
| 13 | Omin <mark>=</mark> 463                             |
| 14 | Omax=482                                            |
| 15 | KKKmax=Omax-Omin+1;                                 |
| 16 |                                                     |
|    |                                                     |

 ✓ Set the Initial condition according to oscillator strength

```
16
17 Voltage=0;%-10;%Volt
18 Temperature=1;%K;
19 Zsteps=126;%400; % number of steps along Z (+1)
20 Zsize= 19.5527347856869191; % cell size along Z from POSCAR
21
22 Z=1:Zetops:Zz=Z/Zetops#Zsize Zsize /2:
```

```
% for master Eq
29
30
         NUM=load('energy_pop')*[1 0 0]';
31
         energy_pop=load('energy_pop')*[0 1 0]';
32
         POP=load('energy pop')*[0 0 1]';
33
34
         forME=load('RRR');
35
         forMEoptic1=load('forMasterOptics');
36
37
         count=1;
38
    日
         for i=1:KKKmax;
39
             for j=1:KKKmax;
40
              forMEoptic(i,j)=forMEoptic1(count);
41
              count=count+1;
42
          end;
43
         end;
```

28 June Group Meeting















$$E(\hbar\omega) = \frac{1}{T} \int_0^T E(\hbar\omega, t) dt$$

%compute integrated emission dt1=[dt(1) dt]; Iemission=emission'\*dt1'; WLgrid=(1241\*Egrid.^(-1))'; PL=[Egrid' WLgrid Iemission]; save -ASCII PL PL

**Results of the Electronic Dynamic Calculation** 



**Results of the Electronic Dynamic Calculation** 



**Results of the Electronic Dynamic Calculation** 









Waterfall(PPe)

Waterfall(PPh)

# Observables: PLQY, radiative/nonradiative recombination

Joe Granlie

### **Radiative Recombination**

- An excited system will tend to lose energy to return to a minimum energy state. An excited electron can do this by emission of a photon
- The rate of this is given by the Einstein Coefficient for Spontaneous Emission

Nu is the transition energy (E1-E2) 
$$k_r=A_{ij}=rac{8\pi^2
u_{ij}^2e^2}{\epsilon_om_ec^3}rac{g_j}{g_i}f_{ij}$$
g is degeneracy of state

f is the oscillator strength

Both values can be found from OS\_STRENGTH file  $\frac{4\pi m_e \nu_{ij}}{f_{ij}} = \frac{4\pi m_e \nu_{ij}}{3\hbar e^2} |\vec{D}_{ij}|^2$ 

### Non-Radiative Recombination

We can use the NACs to calculate the Redfield Tensor, which will tell us the rate of non-radiative recombination



## Photoluminescence Quantum Yield (PLQY)

- PLQY tells us the number of photons that are emitted as a fraction of photons absorbed
- Kasha's Rule: highest PLQY is expected to be between HO-LU. Unoccupied orbitals typically have a high overlap → NAC is high → high non-radiative rate in conduction band





#### Exceptions to Kasha's Rule



Energy gap for LU and LU+n is high, so they have a lower overlap and thus a lower  $k_{nr}$ Oscillator strength between HO and LU+n is relatively high, so  $k_r$  is higher  $\rightarrow$  LU+n is in competition with LU for emission

Energy gap is small for HO-LU and HO-LU+n, so large overlap for all excited states Oscillator strength for HO-LU is low while HO-LU+n is relatively high, so k<sub>r</sub> is higher for LU+n