Excited Carrier Dynamics in Condensed Matter System

From ab initio simulation

Jin Zhao University of Science and Technology of China

Back ground

Single particle dynamics

Spin dynamics

Exciton Dynamics

Outlook

Carrier Dynamics in Condensed Matter Systems

Multi-dimension: energy, momentum, real space, spin, time

Applications of Photoexcited Carrier Dynamics

太阳能电池各种<mark>载流子动力学</mark> 行为共同决定效率

Determining Factors of Carrier Dynamics

Ab initio Code for Excited Carrier Dynamics

光电器件

赵传寓

史永亮

Exciton Dynamics

Outlook

Beyond Born-Oppenheimer Approximation

Mixed Quantum-Classical approximation

 $\Psi(\mathbf{r},\mathbf{R},t) = \Omega_j(\mathbf{R},t)\Phi_j(\mathbf{r};\mathbf{R}); \qquad \hat{\mathcal{H}}_{el}(\mathbf{r};\mathbf{R})\Phi_j(\mathbf{r};\mathbf{R}) = E_j(\mathbf{R})\Phi_j(\mathbf{r};\mathbf{R})$

Fewest surface hopping

Assumptions

- Ensemble of independent trajectories have same coefficients $C_j(t)$.
- Internal consistency condition $N_j(t) \propto C_j^*(t) C_j(t) = \rho_{jj}(t)$.
- Hops from j to different $k \neq j$ are independent.
- Overall trajectory hops should be minimum.

Fewest-Switches: Hopping Probability

Transition from current state j to state $k \neq j$ is allowed only if population of state j is decreasing.

$$P_{jk}(t,\Delta t) = \max\left(-\frac{2\int_{t}^{t+\Delta t} \mathrm{d}t \left[\hbar^{-1} \operatorname{Im}(\rho_{jk}H_{jk}) - \operatorname{Re}(\rho_{jk}\mathbf{d}_{jk} \cdot \dot{\mathbf{R}})\right]}{\rho_{jj}}, 0\right)$$

Surface Hopping Combined with TDKS

A. Akimov and O. Prezhdo: Pyxaid Q. Zheng, X. Jiang, et. al. J. Zhao: Hefei-NAMD

Electron-phonon interaction – Nonadiabatic coupling

$$H_{ki} = \epsilon_k \delta_{ik} - i\hbar \left\langle k \left| \frac{\partial}{\partial t} \right| i \right\rangle$$

Nonadiabatic coupling

$$d_{jk} = \left\langle \varphi_j \left| \frac{\partial}{\partial t} \right| \varphi_k \right\rangle$$
$$\underbrace{- \left\langle \varphi_j \left| \nabla_R H \right| \varphi_k \right\rangle}_{\epsilon_k - \epsilon_j} \dot{R}$$

Electron-phonon matrix elements

$$\mathbf{d}_{jk} = \langle \phi_j | \frac{\partial}{\partial t} | \phi_k \rangle$$
$$= \frac{\langle \phi_j(t) | \phi_k(t + \Delta t) \rangle - \langle \phi_j(t + \Delta t) | \phi_k(t) \rangle}{2\Delta t}$$

✓ charge transfer dynamics

✓ Electron-hole recombination

Electron-phonon interaction - Decoherence Correction

退相干时间

纯退相时间(根据光响应理论) $D(t) = \exp(i\omega t) \left(-\frac{i}{\hbar} \int_0^t \Delta E d(\tau) t \right)$ 能级差 (右图一) $\Delta E = \Delta E_{ij} - \langle \Delta E_{ij} \rangle_T$ 自关联函数 (右图二) $C(t) = \langle \Delta E(\tau) \Delta E(0) \rangle$ 退相干函数 (二次卷积形式,右图三)

$$D(t) = \exp\left(-\frac{1}{\hbar^2} \int_0^t d\tau_1 \int_0^{\tau_1} d\tau_2 \langle \Delta E(t) \cdot \Delta E(0) \rangle\right)$$

What is Photocatalysis

Crucial Processes in Photocatalysis on Surfaces

Photo-absorption

 absorption spectra (DFT, GW+BSE)

 Photoexcited carrier trapping

 Lifetime of photoexcited carriers
 Carrier migration to surface
 Carrier trapping by molecules

 Photochemical reaction on the surface

 Excited state reaction barrier

Crucial Processes in Photocatalysis on Surfaces

✓ Photo-absorption

absorption spectra (DFT, GW+BSE)

✓ Photoexcited carrier trapping

Lifetime of photoexcited carriers

Carrier migration to surface

Carrier trapping by molecules

Photochemical reaction on the surface

Excited state reaction barrier

Excited Carrier Dynamics

CH₃OH behaves as a hole scavenger on TiO₂

Hole induced dissociation of CH₃OH on TiO₂ observed by Bing Wang et.al.

Henderson et.al. believes that CH₃O is the hole trapper in stead of CH₃OH

M. Shen and M. A. Henderson, J. Phys. Chem. Lett. **2**, 2707-2710 (2011)

Hole trapping sites

Average from 10⁵ trajactories

CH₃OH as a Hole Scavenger on TiO₂ Surface

W. Chu, W. A. Saidi, Q. Zheng*, Y. Xie, Z. Lan, O. V. Prezhdo, H. Petek and J. Zhao* J. Am. Chem. Soc, 138, 13740, (2016)

Nuclear Quantum Effects in NAMD

Ring-polymer molecular dynamics (RPMD)

Q: 如何在mixed quantum-classical approximation中考虑核量子效应 A: RPMD + NAMD

Different Adsorption Structures of CH₃OH on TiO₂

Dissociated CH₃O (D_M) behaves as hole scavenger

Nuclear Quantum effects (NQEs) on the Adsorption Structures

$$\delta = R_{O_aH} - R_{O_dH}$$

 $\delta > 0$ no proton transfer δ < 0 proton tranfer

Quantum proton delocalization

NQEs induced proton transfer

Nuclear Quantum effects on the Energy Level Alignment

NQEs change the band alignment of M_D_H system, where a H-bond network is formed.

Nuclear Quantum Effects on Hole Trapping

NQEs makes M_D_H behave as a hole scavenger.

Collective Nuclear Quantum Motion Coupled Hole Transfer

In the H-bond network, the quantum proton motion is collective, which couples with hole trapping dynamics.

Experimental Evidence by STM

Dimer formation (H-bond network) improves the photochemical reaction rate.

Summary - Example I

W. Chu et al. X. Li*, J. Zhao* Sci. Adv. 8, eabo2675 (2022)

Outlook - Example I

RPMD/PIMD is very expensive! Machine Learning + PIMD/RPMD

Outlook - Part II

√ 激发态势能面

√ 激发态载流子寿命

✓ 势能面交叉

基态催化:

计算反应势垒,方法非常成熟

Spin dynamics

Exciton Dynamics

Outlook

Spin Dynamics

Spin-Orbital Interaction

Spin-Spin Interaction

Dynamics of Photogenerated Spin Hole Current

C. Zhao, et al. and J. Zhao^{*}, *Phys. Rev. B* **96**, 134308 (2017)

NAMD with SOC

The time-dependent Schrödinger equation

$$i\hbar \frac{\partial |\Psi(\mathbf{r}, \mathbf{R}(t), \mathbf{s}, t)\rangle}{\partial t} = \hat{\mathcal{H}}^{tot}(\mathbf{r}, \mathbf{R}(t), \mathbf{s}) |\Psi(\mathbf{r}, \mathbf{R}(t), \mathbf{s}, t)\rangle$$
(1)

where the total Hamiltonian is given by

$$\hat{\mathcal{H}}^{tot}(\mathbf{r}, \mathbf{R}(t), \mathbf{s}) = \hat{\mathcal{H}}^{0}(\mathbf{r}, \mathbf{R}(t)) + \hat{\mathcal{H}}^{soc}(\mathbf{r}, \mathbf{R}(t), \mathbf{s})$$
(2)

by expanding the wavefunction with a basis set $\{|\psi_i\rangle\}$ or different representations

$$|\Psi\rangle = \sum_{i} |\psi_{i}\rangle\langle\psi_{i}|\Psi\rangle = \sum_{i} c_{i}|\psi_{i}\rangle$$
(3)

and substituting eq (3) into eq (1), we have

$$\frac{\partial c_{j}(t)}{\partial t} = -\sum_{i} \left[i\hbar^{-1} \langle \psi_{j} | \hat{\mathcal{H}}^{tot} | \psi_{i} \rangle + \langle \psi_{j} | \frac{\mathrm{d}}{\mathrm{d}t} | \psi_{i} \rangle \right] c_{i}(t)$$

$$= -\sum_{i} \left[i\hbar^{-1} \langle \psi_{j} | \hat{\mathcal{H}}^{0} | \psi_{i} \rangle + i\hbar^{-1} \langle \psi_{j} | \hat{\mathcal{H}}^{soc} | \psi_{i} \rangle + \langle \psi_{j} | \frac{\mathrm{d}}{\mathrm{d}t} | \psi_{i} \rangle \right] c_{i}(t)$$

$$= -\sum_{i} \left(i\hbar^{-1} H_{ji}^{0} + i\hbar^{-1} H_{ji}^{soc} + T_{ji} \right) c_{i}(t)$$
(4)

Choices of Representations

- "Spin-diabatic" representation
 - $H_{ji}^{0} = E_{j}\delta_{ji}$, i.e. $\{|\psi_{i}\rangle\} \Rightarrow$ eigenstates of $\hat{\mathcal{H}}^{0}$.
 - $H_{ii}^{soc} = 0$ for same spin multiplicity.
 - $T_{ji} = 0$ for different spin multiplicity.
 - Used with weak SOC.
- "Spin-adiabatic" representation
 - $H_{ji}^{0} + H_{ji}^{soc} = \Lambda_{ji} \delta_{ji}$, i.e. $\{|\psi_i\rangle\} \Rightarrow$ eigenstates of $\hat{\mathcal{H}}^{tot}$.
 - Hopping solely determined by T_{ji} .
 - Strong SOC.

The hopping probility within FSSH

$$P_{j \to k}(t, \Delta t) = \max\left(-\frac{2\Delta t \left[\hbar^{-1} \operatorname{Im}(c_j^* c_k(H_{jk}^0 + H_{jk}^{\text{soc}})) - \operatorname{Re}(c_j^* c_k T_{jk})\right]}{c_j^* c_j}, 0\right)$$

郑奇靖

Ni金属自旋轨道耦合引发超快退磁过程

Spin down electrons **will NOT** flip to Spin up electrons due to SOC They will decay to spin down electrons with lower energies.

自旋轨道耦合与电声耦合

 $H_{ki} = \epsilon_k \delta_{ik} - i\hbar \left\langle k \left| \frac{\partial}{\partial t} \right| i \right\rangle + i\hbar \langle k | \mathcal{H}^{SOC} | i \rangle$

In Ni, e-ph coupling > SOC. The electron tends to decay through the orbitals with the same spin.

Ni体系超快退磁

Z. Zheng, Q. Zheng*, J. Zhao*, Phys. Rev. B 105, 085142 (2022)

Excited Electron Dynamics in Bi₂Se₃

Back scattering between TSS@+S and TSS@-S is forbidden

 $|+> = \mathcal{T}|-> \langle +|U|-\rangle = 0$

Excited State Spin Dynamics in Bi₂Se₃

Spin canting occurs in ~ 50 fs

Ultrafast Spin Relaxation of the Excited TSS Electron

C. Zhao, Q. Zheng*, J. Zhao*, Fundamental Research in press

N. Gedik* et al. Phys. Rev. Lett. 107, 077401 (2011)

FIG. 2. Helicity-dependent population asymmetry. (a)–(c) Momentum distribution curves (MDCs) of the unoccupied band structure, excited with σ_+ (dashed purple line) and σ_- (solid green line) polarized pulses. (a) and (b) were taken at $\Delta t = 0$, and (c) at $\Delta t = 165$ fs, at the energies marked by the short gray lines in (d) and (e). (d),(e) Asymmetry image: Difference between the populations of the unoccupied bands when excited by σ_- and σ_+ polarized pulses, taken at $\Delta t = 0$ and 165 fs respectively. Black lines are guides to the eye that follow the dispersions of the unoccupied bands.

Z. X. Shen* et al. Phys. Rev. Lett. 122, 167401 (2019)

Back ground

Single particle dynamics

– Spin dynamics

Exciton Dynamics

Outlook

Excitons in 2D Materials

A. Chernikov et al. Phys. Rev. Lett. 113 076802 (2014)

2D materials: quantum confinement significantly reduce the dielectric screening and increase the exciton binding energy

Failure of DFT

https://www.sas.upenn.edu/~jianmint/Research/

A. Morales-Garcia et al. J. Phys. Chem. C, 121, 18862 (2017)

GW + BSE to Describe the Exciton

$$\Sigma^{\text{GW}}(\mathbf{r},\mathbf{r}',\omega) = -rac{i}{2\pi}\int \mathrm{d}\omega \ e^{i\omega\eta} G(\mathbf{r},\mathbf{r}',\omega+\omega') W(\mathbf{r},\mathbf{r}',\omega')$$

$$H_{c'v'k'}^{cvk} = \left[E_{ck}^{\rm QP} - E_{vk}^{\rm QP} \right] \delta_{cc'} \delta_{vv'} \delta_{kk'} - W_{c'v'k'}^{cvk} + 2v_{c'v'}^{cvk}$$

GW: self-energy take place of exchange correlation potential

Accurate Quasi-particle energies

Bethe-Salpeter Equation (BSE): Screened Coulomb (*W*) and exchange (*v*) interaction of electron and hole

Exciton binding energy and wave function

Exciton Dynamics is Important

10,000 times of GW+BSE calculations are too expensive!

Realization of *GW* + Real-Time BSE

Realization of *GW* + Real-Time BSE

- Many-body interaction: Coulomb and exchange
- Exciton-phonon interaction: real-time BSE + molecular dynamics
- ✓ Spin orbital coupling: adiabatic and diabatic representation
- Nonadiabatic: surface hopping

含时激子动力学方法实现

Fast Intervalley Bright Exciton Scattering in Transition Metal Dichalcogenide

Intervalley bright exciton scattering requires the spin flip and momentum transition of both electron and hole

Puzzle: how can such intervalley bright exciton happen within several picoseconds?

Test of the Dielectric Function Approximation

The dielectric function and GWQP correction almost does not change with the structure

Exciton Dynamics in MoS₂

Exchange Interaction Induced Bright Exciton Scattering

Nonadiabatic Coupling Elements:

Single particle dynamics: e-phExciton dynamics: e-ph + W(e-h Coulomb) + v(e-h exchange) + SOC

Bright Exciton transition is induced by *e-h* exchange interaction

Single Particle Picture

Spin particle picture: photoexcited hole keeps in K valley

Summary

Single-particle

- ✓ Many-body interaction
- ✓ Exciton-phonon interaction
- ✓ Spin orbital coupling
- ✓ Nonadiabatic effects

X. Jiang, Q. Zheng, Z. Lan, W. A. Saidi, X. Ren and J. Zhao* *Sci. Adv.*, **7**, eabf3759, (2021)

Xiang Jiang 蒋翔

research highlights

Check for updates

TWO-DIMENSIONAL MATERIALS

Computationally probing exciton dynamics

Sci. Adv. 7, eabf3759 (2021)

Light-matter interactions are essential to many optical and optoelectronic applications, such as solar-to-electrical energy conversion. When light sheds on a semiconductor material, an electronhole (e-h) pair can be created. In semiconductor physics, a hole defines a This team of researchers developed their computational method by integrating the ab initio non-adiabatic molecular dynamics (NAMD), the *GW* method, and real-time evolution of the Bethe–Salpeter equation (BSE); they named their method as *GW* + rtBSE + NAMD. In their framework,

Back ground

Single particle dynamics

Spin dynamics

Exciton Dynamics

Outlook

What can be Done Using the GW-rtBSE NAMD Simulation

✓ Exciton Lifetime

✓ Hot exciton Relaxation

 ✓ Exciton transition at interface via spin valley bright-to-dark

✓ Exciton-Phonon Interaction

✓ Exciton-Polaron interaction

 Excited state potential surface from machine learning

Several thousands of exciton energies can be used for machine learning

Photo-induced phase transition

Photocatalysis

NAMD Simulation in Momentum Space

Phonon Excitation

Hefei-NAMD的应用与推广

Publications by Hefei-NAMD (over 80)

Journal	Number of Publications			
Sci. Adv.	3			
Nat. Commun.	1			
Phys. Rev. Lett.	3			
JACS	2			
Adv. Mater.	1			
Nano Lett.	4			
ACS NANO	1			
J. Phys. Chem. Lett.	18			
Chem. Sci.	1			
Angew Chem.	1			

RESEARCH ARTICLE

NANO LE

www.advmat.de pubs.acs.org/NanoLett

Ultrafast Interlayer Charge Separation, Enhanced Visible-Light Absorption, and Tunable Overpotential in Twisted Graphitic Carbon Nitride Bilayers for Water Splitting

Xirui Zhang, Tong Wu, Chao Yu, and Ruifeng Lu*

Universal Zigzag Edge Reconstruction of an α -Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation

Yanxue Zhang, Yanyan Zhao, Yizhen Bai, Junfeng Gao,* Jijun Zhao, and Yong-Wei Zhang*

TERS

Two Dimensional MOene: From Superconductors to Direct Semiconductors and Weyl Fermions

Luo Yan, Jiaojiao Zhu, Bao-Tian Wang, Junjie He, Hai-Zhi Song, Weibin Chu, Sergei Tretiak, and Liujiang Zhou $\!\!\!\!$

\odot	Cite Thi	s: https://doi.or	g/10.1021/acs.nanol	att.2c01914	Read Online	
ACC	ESS	لللها	Metrics & More	1	Article Recommendations	 Supporting Information

ABSTRACT: The number of semiconducting McGness with direct band gaps is extremely low; thus, it is highly detrible to broaden the McGne family beyond carbides and nitrides to expand the patter of desired chemical and physical properties. Here, we theoretically report the existence of the single-layer (SL) ditativitum oxide 2H-Ti₁O. McGne (McKnes-like 2D transition oxides), showing an ising superconducting feature. Moreover, SL halogenated 2H-Ti₁O. McGne (McKnes-like 2D transition oxides), showing an ising superconducting features. Moreover, shalogen the superconducting features and strong light-harvesting ability. In additors, the certarul strains can induce Weyl fermions via quantum phase transition in 2H-Ti₁OF₂ and Ti₁OCI₂, monolayers: Specifically 2H-and TT-Ti₁OF₂ are direct semiconatchey with

opecunary, zn- and 11-11,01-2 are unece semiconnactory with band gaps of 0.02 and 11.8 eV, respectively. Furthermore, the carrier lefetimes of \$2.2H- and 11-T1,0F, are evaluated to be 0.39 and 2.8 ns, respectively. This study extends emerging phenomena in a rich family of 2D MXene-like MOene materials, which provides a novel platform for next-generation optoelectronic and photovoltaci fields.

KEYWORDS: MXene-like MOene, halogenation, quantum phase transition, exciton, nonadiabatic molecular dynamics

电子科大周柳江

Letter

Reference & Developers

Video

Hefei-NAMD使用的一些经验 https://www.koushare.com/video/videodetail/11720

Hefei-NAMD基本流程介绍 https://www.bilibili.com/video/BV1p5411c7RS

Hefei-NAMD培训 https://www.koushare.com/lives/room/341102

Website:

http://staff.ustc.edu.cn/~zqj http://staff.ustc.edu.cn/~zhaojin https://github.com/QijingZheng https://github.com/WeibinChu

Developers:

Dr. Qijing Zheng (郑奇靖), zqj@ustc.edu.cn Mr. Xiang Jiang (蒋翔), jxiang@mail.ustc.edu.cn, exciton dynamics Dr. Weibin Chu (褚维斌), wbchu@ustc.edu.cn, CA-NAC, DISH Dr. Chuanyu Zhao (赵传寓), zhaochuanyu@zju.edu.cn, DISH Mr. Zhenfa Zheng (郑镇法), zzfgjs@mail.ustc.edu.cn, Dynamics in momentum space

Determining Factors of Carrier Dynamics

No perturbation, no relaxation : $\langle {m \psi}_i | {m \psi}_i
angle = {m 0}$

郑奇靖 中科大副教授

褚维斌 复旦大学青年研究员

蒋翔 UC Irvine 博后

郑镇法 博士生

史永亮 华为

张丽丽

郑州大学讲师

赵传寓 腾讯

兰峥岗 华南师大 Surface hopping

李新征 北京大学 PIMD

任新国 中科院物理所 GW+BSE

谭世倞 中科大 实验

王兵 中科大 实验

Hrvoje Petek 匹兹堡大学 实验

杨金龙 中科大 讨论+支持

