


Recalling:
Alternative representation of the molecular wavefunction: Ψ(r,R, t) = Φ(r, t;R)𝜒 (R, t)

In the exact factorization, both nuclear and electronic wave functions are time-dependent, so we get a set
of coupled equations of motion:

i
𝜕

𝜕t
𝜒 (R, t) =

[
Nn∑︁
a

[−i∇Ra
+ Aa (R, t)]2

2Ma

+ 𝜖 (R, t) + vint (R, t)
]
𝜒 (R, t)

i
𝜕

𝜕t
Φ(r, t;R) =

[
ĤBO (r,R) + V̂ (r,R, t) + Ûen [Φ, 𝜒] (R, t) − 𝜖 (R, t) − vint (R, t)

]
Φ(r, t;R)̧

Two new potentials:
TDVP: Aa (R, t) = ⟨Φ(t;R) | − i∇Ra

Φ(t;R)⟩r
TDPES: 𝜖 (R, t) = ⟨Φ(t;R) | [ĤBO (R) + Ûen [Φ, 𝜒] (R, t) − i𝜕t ] |Φ(t;R)⟩r
TDPES: vint (R, t) = ⟨Φ(t;R) | V̂ (R, t) |Φ(t;R)⟩r
Electron-nuclear coupling operator:

Ûen [Φ, 𝜒] (R, t) =
∑︁
a

1
Ma

(
1
2
[−i∇Ra

− Aa (R, t)]2 +
(−i∇Ra

𝜒 (R, t)
𝜒 (R, t) + Aa (R, t)

) (
−i∇Ra

− Aa (R, t)
) )
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Trajectories within the EF – qualitative derivation

Single time-dependent scalar and vector potential drive the dynamics – framework for trajectories
without hops, spawns, averaging etc.

BO-picture
Hamiltonian operator:

Ĥ =
∑︁
a

(−i∇a )2

2Ma

+ 𝜖BO (R)

Classical Hamiltonian:

Hcl =
∑︁
a

P2
a (R, t)
2Ma

+ 𝜖BO (R)

For quantum trajectories:

Hq =
∑︁
a

P2
a (R, t)
2Ma

+ 𝜖BO (R) + Qpot

EF-picture
Nuclear Hamiltonian operator:

Ĥn =
∑︁
a

[−i∇a + A(R, t)]2

2Ma

+ 𝜖 (R, t)

Classical Hamiltonian:

Hcl
n =

∑︁
a

[Pa (R, t) + Aa (R, t)]2

2Ma

+ 𝜖 (R, t)

For quantum trajectories:

Hq
n =

∑︁
a

[Pa (R, t) + Aa (R, t)]2

2Ma

+ 𝜖 (R, t) + Qpot
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Trajectories within EF – proper derivation

We use again the polar form of the nuclear wavefunctiona

𝜒 (R, t) = exp[iS(R, t)] |𝜒 (R, t)

Insert it in the TDSE, applying the differential operators, and separating its real and imaginary parts, we
derive an evolution equation for the phase:

𝜕tS(R, t) = −
∑︁
a

[∇aS(R, t) + Aa (R, t)]2

2Ma

− 𝜖 (R, t) −
∑︁
a

∇2
a |𝜒 (R, t) |

2Ma |𝜒 (R, t) |

Now, if we take R, t, S,∇S = P, 𝜕tS = St as independent variables, this can be identified with a
Hamilton-Jacobi equation with the Hamiltonian:

−St = Hq
n =

∑︁
a

[Pa (R, t) + Aa (R, t)]2

2Ma

+ 𝜖 (R, t) + vint (R, t) + Qpot

aF. Agostini et al., Eur. Phys. J. B (2018), 91, 139; F. Talotta et al., J. Phys. Chem. A (2020), 124, 34, 6764
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Trajectories within EF – proper derivation II
we obtain Hamilton-like evolution equations for the evolution of positions and momenta:

¤Ra (t) =
Pa (t) + Aa (R(t), t)

Ma

and ¤Pa (t) = −∇Ra
Hq
n (P(t),R(t), t)

That simplify in the chosen gauge, S = 0, to:

¤Ra (t) =
Aa (R(t), t)

Ma

and ¤Pa (t) = 0

Classical trajectories obtained for the limit where the quantum potential is set to zero:

Hn (P,R, t) =
∑︁
a

[Pa (R, t) + Aa (R, t)]2

2Ma

+ 𝜖 (R, t) + vint (R, t) + Qpot (R, t)

=Hcl
n (P(t),R(t), t) + Qpot (R, t)

So the evolution equations for the classical trajectories are

¤Ra (t) =
Pa (t) + Aa

Ma

and ¤Pa (t) = −∇Ra
Hcl
n (P(t),R(t), t)
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How to initialize trajectories?

Classical trajectories: Positions and momenta Wigner sampling
Quantum trajectories: Cannot separate positions and momenta. Use Wigner sampled positions,
corresponding momenta from A.
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Dynamics of Quantum Trajectories
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Momentum distribution
Momentum obtained from Aa (R, t), drives the dynamics and encodes all the behavior observed in the
dynamics.
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Dynamics of Classical Trajectories
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Momentum distribution

Momentum obtained from Aa (R, t), initialized from Wigner distribution.
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Trajectories in EF

Dynamics of trajectories on single surface incorporates all nonadiabatic effects. But need to know full
TDPES and TDVP, derived within 2D Gauge of S = 0. How can we move to EF based trajectories for
molecules?

1 Get TDVP and TDPES on-the-fly
2 Calculate TDVP and TDPES from adiabatic quanities
3 Use generally applicable gauge (for any number of degrees of freedom).
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Classical trajectory methods from EF for molecules
As before, the nuclear wavefunction is written in the polar form, and we get evolution equations from the
nuclear time-dependent Schrödinger equation (we already neglect Qpot):

−𝜕tS(R, t) =
∑︁
a

∇aS(R, t) + Aa (R, t)]2

2Ma

+ 𝜖 (R, t)

𝜕t |𝜒 (R, t) |2 = −
∑︁
a

∇a ·
[
∇aS(R, t) + Aa (R, t)

Ma

|𝜒 (R, t) |2
]

We can again solve with characteristics, to get to

¤Ra (t) =
Pa (t)
Ma

¤Pa (t) = −∇a

[
𝜖 (R(t), t) +

∑︁
a ′

¤Ra ′ (t) · Aa ′ (R(t), t)
]
+ ¤Aa (R(t), t)

We use a generally applicable gauge:

𝜖 (R(t), t) +
∑︁
a

¤Ra (t) · Aa (R(t), t) = 0

S.K. Min et al., Phys. Rev. Lett. 2015, 115, 7, 073001
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Classical trajectory methods from EF for molecules

Evolution of the nuclear density can be described by the continuity equation, coupled to the evolution of
the phase.
But replace by trajectories, reconstruct a classical like nuclear density from the trajectories (see later),
assuming that for short enough times, ensemble of classical trajectories will sample nuclear configuration
space with high probability density.
How about electronic evolution?

i
𝜕

𝜕t
Φ(r, t;R) =

[
ĤBO (r,R) + Ûen [Φ, 𝜒] (R, t) − 𝜖 (R, t) (R, t)

]
Φ(r, t;R)

Important property to look at: Ûen [Φ, 𝜒] electron-nuclear coupling operator!

S.K. Min et al., Phys. Rev. Lett. 2015, 115, 7, 073001
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Classical trajectory methods from EF for molecules

The electron-nuclear coupling operator

Ûen [Φ, 𝜒] (R, t) =
∑︁
a

1
Ma

(
1
2
[−i∇Ra

− Aa (R, t)]2 +
(−i∇Ra

𝜒 (R, t)
𝜒 (R, t) + Aa (R, t)

) (
−i∇Ra

− Aa (R, t)
) )

is then approximated and simplified:

Ûen ≈
∑︁
a

(
¤Ra (t) + i

Pa (R(t), t)
Ma

)
(−i∇a − Aa (R(t), t))

We neglect the first term, that was shown to be smallerb and with the characteristic definitions the rest
simplifies and we introduce the quantum momentum as Pa (R(t), t) = −∇a |𝜒 (R(t ),t ) |2

2 |𝜒 (R(t ),t ) |2
Quantum momentum: purely imaginary correction, introduces quantum decoherence effects, needs
nuclear density — coupled trajectories
We’ll talk later in detail how we get to this quantity!

bF. Eich and F. Agostini, J. Chem. Phys. 2016, 145, 054110
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Evolution of coefficients in CT-MQC
We reconstrunct the nuclear density from Ntraj trajectories, labelled with 𝛼 . Let’s express nuclear
wavefunction in terms of eigenfunctions of ĤBO:

Φ(r, t;R𝛼 (t)) =
∑︁
J

CJ (R𝛼 (t), t)𝜙 (J )
R𝛼 (t ) (r)

now, the PNC becomes:
∑

J |CJ (R𝛼 (t), t) |2 = 1∀R𝛼 (t), t
When we insert this expression, in the evolution equation for the nuclear wavefunction

i
𝜕

𝜕t
Φ(r, t;R) =

[
ĤBO (r,R) + Ûen [Φ, 𝜒] (R, t) − 𝜖 (R, t) (R, t)

]
Φ(r, t;R)

we can derive evolution equations for the expansion coefficients

¤C𝛼
J = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

with the two contributions

¤C𝛼
J,TSH (t) = −iE𝛼

J C
𝛼
J (t) −

∑︁
K

Nn∑︁
a

¤R𝛼

a (t) · d𝛼a,JKC𝛼
K (t) ¤C𝛼

J,qm (t) =
Nn∑︁
a

P𝛼
a (t)
Ma

· (f𝛼a,J − A𝛼
a (t))C𝛼

J (t)
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Let’s have a closer look at these two contributions:

¤C𝛼
J,TSH (t) = −iE𝛼

J C
𝛼
J (t) −

∑︁
K

Nn∑︁
a

¤R𝛼

a (t) · d𝛼a,JKC𝛼
K (t)

Same contribution as in surface hopping: E𝛼J is the Jth eigenvalue of ĤBO, ¤R𝛼

a (t) the velocity of nucleus a ,

d𝛼a,JK = ⟨𝜙 J
R𝛼 (t ) |∇a𝜙

K
R𝛼 (t )⟩ the nonadiabatic coupling vector between state J and K .

The additional term:

¤C𝛼
J,qm (t) =

Nn∑︁
a

P𝛼
a (t)
Ma

· (f𝛼a,J − A𝛼
a (t))C𝛼

J (t)

depends on the quantum momentum P𝛼
a (t) and the time-dependent vector potential A𝛼

a (t) along the
trajectory and the Jth adiabatic force, accumulated over time, along the trajectory 𝛼 :

f𝛼a,J =
∫ t

0
(−∇aE𝛼

J )d𝜏

The TDVP is approximated because the NACV is spatially localized, whereas the force is accumulated
over time.

A𝛼
a (t) =

∑︁
J,K

ℑ[C̄𝛼
J (t)C

𝛼
K (t)]d

𝛼
a,JK +

∑︁
J

|C𝛼
J (t) |

2f𝛼a,J ≈
∑︁
J

|C𝛼
J (t) |

2f𝛼a,J
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Nuclear evolution in CT-MQC

The nuclear trajectory R𝛼
a (t) is propagtated according to the CT-MQC force given by

F𝛼a (t) = F𝛼a,MF (t) + F𝛼a,NAC (t) + F𝛼a,qm (t)

with a mean-field contribution, a contribution from the nonadiabatic coupling vectors (those make up a
standard Ehrenfest term) and an additional contribution, dependent on quantum momentum and
accumulated force

F𝛼a,MF (t) =
∑︁
J

|C𝛼
J (t) |

2 (−∇aE𝛼
J )

F𝛼a,NAC (t) =
∑︁
J,K

C̄𝛼
J (t)C

𝛼
K (t) (E

𝛼
J − E𝛼

K )d
𝛼
a,JK

F𝛼a,qm (t) = 2
∑︁
J

|C𝛼
J (t) |

2

[
Nn∑̀︁

P𝛼
` (t) · f𝛼`,J

]
(f𝛼`,J − A𝛼

a (t))
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Quantum decoherence and coupling between trajectories
Quantum decoherence: trajectory-based algorithms rely on ad-hoc corrections.
CT-MQC is derived from the exact nuclear and electronic equations, captures quantum decohrence
through the quantum momentum term.

In the population evaluation, this term is

d|C𝛼
J (t) |

2

dt
=

∑︁
a

2Pa (t)
Ma

[
f𝛼a,J −

(∑︁
K

|C𝛼
K (t) |

2f𝛼a,K

)]
|C𝛼

J (t) |
2

The crucial quantity is the quantum momentum,

P𝛼
a (R𝛼 (t), t) = −∇a |𝜒 (R𝛼 (t), t) |2

2|𝜒 (R𝛼 (t), t) |2

Requires information of the full nuclear density. Therefore, to be able to approximate this for trajectories,
we need to have a set of coupled trajectories, that allow us to reconstruct the nuclear density. Generally,
the position of the nuclear wavefunction at the position of the trajectory can be approximated as

𝜒 (R𝛼 (t), t) = 1
Ntraj

traj∑︁
𝛽

√︃
G𝛼𝛽
𝜎 exp[iS𝛽 (t)]
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Approximations to the quantum momentum

Only taking the diagonal parts of |𝜒 (R𝛼 (t), t) |2:

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t) =

1
𝜎a

©«R𝛼
a (t) −

Ntraj∑︁
𝛽

R𝛽 (t) G𝛼𝛽
𝜎∑Ntraj

𝛾 G𝛼𝛾
𝜎

ª®¬

However, when looking at the change of population over time, it can change even when the nonadiabatic
couplings are zero. In the average over all trajectories is needs to yield zero population transfer from state
J to K if the corresponding nonadiabatic couplings are zero. To ensure this, we impose a condition on the
quantum momentum, that the change of population is zero if the nonadiabatic couplings are zero, for
each nuclear degree of freedom, a

Ntraj∑︁
𝛼

P𝛼
a,KJ (t) (f

𝛼
a,K − f 𝛼a,J) |C

𝛼
J |

2 |C𝛼
K |

2 = 0∀J, a
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Short summary of CT-MQC
CT-MQC is an algorithm to propagate classical
trajectories based on the TDPES and TDVP, but
constructs them on-the-fly from adiabatic quantities.
Trajectories propagated with an Ehrenfest-like force
(that contains mean-field and NAC) and a
coupled-trajectory term:

F𝛼a (t) = F𝛼a,MF (t) + F𝛼a,NAC (t) + F𝛼a,CT (t)

Also evolution of electronic coefficients includes an
Ehrenfest-like term and a term depending on the
quantum momentum:

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

The quantum momentum induces decoherence and
requires information of the nuclear density —
approximated through coupled trajectories.
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Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Workflow CT-MQC

G-CTMQC:
https://gitlab.com/agostini.work/g-ctmqc.git

Interface with QuantumModelLib
https://github.com/lauvergn/QuantumModelLib.git

for a large number of model Hamiltonians.

f𝛼a,J =
∫ t

0 (−∇aE𝛼
J )d𝜏

P𝛼
a (t) = Γ𝛼a (t)R𝛼

a (t) − R𝛼
a (t)

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

F𝛼a (t) = F𝛼
a,MF (t) + F𝛼

a,NAC (t) + F𝛼
a,CT (t)

Lea Ibele Trajectory approaches within the exact factorization



Example CT-MQC for molecules: oxirane

CT-MQC was interfaced with CPMD, 100 trajectories, TD-PBE, plane wave basis set. a

aS.K. Min et al., J. Phys. Chem. Lett. 2017, 8, 13, 3048–3055; B.F.E. Curchod et al., Eur. Phys. J. B 2018 91, 168
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Extensions of CT-MQC: Triplets
Including spin-orbit couplings in
G-CT-MQC. a

i𝜕t 𝜒 (R, t)Φ(x, t;R) =(
T̂el + ĤBO + ĤSOC

)
𝜒 (R, t)Φ(x, t;R)

spin-diabatic basis (eigenstates of ĤBO) vs.
spin-adiabatic basis (eigenstates of
ĤBO + ĤSOC)
Here is a new link for visio mode, we hope
this one will work better :
https://eu.bbcollab.com/guest/d22947d971214279a497ae82e33a5d5d
Sorry for the inconvenience,

aF. Talotta et al., Phys. Rev. Lett. 2020, 124,
033001; F. Talotta et al., J. Chem. Theory Comput.
2020, 16, 8, 4833-4848
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Extensions of CT-MQC: Time-periodic fields

Including time-periodic fields (V̂ (t) = −ˆ̀E0 cos(Ωt)) with Floquet formalism, F-CT-MQC: c

i𝜕t 𝜒 (R, t)Φ(r, t;R) =
(
T̂el + ĤBO + V̂ (t)

)
𝜒 (R, t)Φ(r, t;R)

Floquet theorem for the TDSE
A complete set of solutions of a time-periodic TDSE
with period T takes the form eiEmt𝜙m (t)
where the eigenvalues of the Floquet Hamiltonian
ĤFl (t) = ĤBO + V̂ (t) − i𝜕t are called Floquet
quasi-energies

ĤFl (t)𝜙m (t) = Em𝜙m (t)

and Floquet eigenmodes are periodic in time:
𝜙m (t) = 𝜙m (t + T ).

The eigenmodes are expanded in harmonics of the
external drive with 𝜔n = nΩ

𝜙m (t) =
n=+∞∑︁
n=−∞

ei𝜔nt𝜙
(n)
m

an eigenvalue problem can be solved for the Fourier
components 𝜙 (n)

m and the problem becomes
essentially stationary. States ’dressed’ with the
harmonics

cM. Schiró et al., J. Chem. Phys. 2021, 154, 114101
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Initial conditions and approximations of CT-MQC

To alleviate the cost: Independent Bundle
Approximation (IBA). IBA-E ordered according
to total energy; IBE-T according to kinetic
energy; IBA-r randomly organized.a

aC. Pieroni and F. Agostini, J. Chem. Theory Comput.
2021, 17, 10, 5969–5991
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CT-TSH

In CT-MQC trajectories propagated with an Ehrenfest-like force (that contains mean-field and NAC) and
a coupled-trajectory term:

F𝛼a (t) = F𝛼a,MF (t) + F𝛼a,NAC (t) + F𝛼a,CT (t)

Also evolution of electronic coefficients includes an Ehrenfest-like term and a term depending on the
quantum momentum:

¤C𝛼
J (t) = ¤C𝛼

J,TSH (t) + ¤C𝛼
J,qm (t)

CT-TSH propagates following the adiabatic forces, but still includes the quantum momentum in the
evolution of the coefficients — increases stability, reduces cost (no more explicit NAC) d

method trajectory nuclear foreces electronic evolution hopping decoherence
CT-MQC coupled TDPES and TDVP ¤CTSH (t) + ¤Cqm (t) none QM
FS-CT-TSH coupled BOPES ¤CTSH (t) + ¤Cqm (t) FS QM
LZ-CT-TSH coupled BOPES ¤CTSH (t) + ¤Cqm (t) LZ QM
FS-TSH ITA BOPES ¤CTSH (t) FS none
FS-TSH-EDC ITA BOPES ¤CTSH (t) FS EDC

dC. Pieroni and F. Agostini, J. Chem. Theory Comput. 2021, 17, 10, 5969–5991
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Overview

▶ CT-MQC and CT-TSH allow to run trajectories in an algorithm derived from the exact factorization.
▶ Decoherence included derived from QM
▶ Extensions for triplets and time-periodic fields
▶ Much more room for developments in the future!

Hands-On:
▶ G-CTMQC: https://gitlab.com/agostini.work/g-ctmqc.git:

VERY easy to compile and run (only needs gfortran, lapack and blas to run on your laptops).
At the moment interface with QuantumModelLib
(https://github.com/lauvergn/QuantumModelLib.git) for a large number of model
Hamiltonians.

▶ Today: 1D (NaI) and 2D (conical intersection) model systems
▶ compare CT-MQC, CT-TSH, Ehrenfest, TSH, TSH-EDC with exact calculations.
▶ Highlight differences between methods, decohrence etc.
▶ Lots of possibilities to play with the code and get understandings of trajectory based dynamics!
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