Excited-State Coupled Electronic-Structural Dynamics of Molecular Systems with DynEMol

Luis G. C. Rego Department of Physics Federal University of Santa Catarina

Adapted from G.R. Fleming & P.G. Wolynes, Phys. Today (1990), vol. 43, p. 36

DynEMol (Dynamics of Electrons in Molecules)

- Motivation
 - Self-Consistent Quantum-Classic Method for excited-state dynamics of Molecular and Extended Systems
- Applications
 - Intramolecular Vibration Relaxation (IVR)
 - Photoinduced Isomerization
 - Photoinduced Proton Transfer
 - Interfacial Electron Transfer
 - Spin Dynamics Effects

Theoretical Method and Models

Our goal:

Modelling electron quantum dynamics in large molecular systems

< 10² atoms $10^2 - 10^4$ atoms
small to medium size large size
First principles
Quantum Mechanics
Molecular Dynamics $\tau \leq \text{few picoseconds}$

 $\gg 10^4$ atoms Very large size Classical Dynamics $\tau > 10^2$ picoseconds

Combines:

Molecular Mechanics and tight-binding semi-empirical methods

Wavepacket propagation of charge excitation

Nonadiabatic Excited-State Dynamics with Dynemol

JPC-C 2016, **120**, 27688.

Nano Lett. 2021, 21, 8190.

JPC-C 2011, **115**, 15617.

JPC-C, 2016, **120**, 27688. JPC-L, 2018, **9**, 5926.

JPC-L, 2015, **6**, 4927. JPC-C, 2019,**123**, 5692.

Effects of UV radiation on DNA strands

Quantum Dynamics of Electrons and Nuclei

Time-dependent Schrödinger equation (1926):

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(r,R,t) = \left[\frac{\hbar^2}{2m}\nabla_r^2 + \frac{\hbar^2}{2M}\nabla_R^2 + V(r,R)\right]\Psi(r,R,t)$$

Paul Dirac (1928):

"The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved."

The electron-nucleus problem in molecular structures

Molecular Schrödinger Equation:

$$\hat{H}_{mol}(r,R)\Psi(r,R) = E\Psi(r,R)$$

 $\hat{H}_{mol}(r,R) = \hat{T}_e(r) + V_{eN}(r,R) + V_{ee}(r) + \hat{T}_N(R) + V_{NN}(R)$

$$\hat{T}_{N} = \sum_{n}^{N_{nuc}} \frac{P_{j}^{2}}{2M_{n}} \qquad V_{NN} = \frac{1}{2} \sum_{n \neq m} \frac{Z_{n} Z_{m} e^{2}}{|\vec{R}_{n} - \vec{R}_{m}|} \qquad V_{eN} = -\sum_{j,n} \frac{Z_{n} e^{2}}{|\vec{r}_{j} - \vec{R}_{n}|}$$
$$\hat{T}_{e} = \sum_{j}^{N_{e}} \frac{p_{j}^{2}}{2m_{e}} \qquad V_{ee} = \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|\vec{r}_{i} - \vec{r}_{j}|}$$

The total Hamiltonian:

$$\hat{H} = \hat{H}_{el} + \hat{H}_{ph} + \hat{H}_{el-ph} = \sum_{\kappa} E_{\kappa} b_{\kappa}^{\dagger} b_{\kappa} + \sum_{\alpha} \left(\hat{n}_{\alpha} + \frac{1}{2} \right) \hbar \omega_{\alpha} + \hat{V}_{el-ph}$$

rigorous solution:

$$\left|\Psi\right\rangle = \sum_{\kappa,\mathbf{n}} C_{\kappa,\mathbf{n}} \left[\left|\Phi_{\kappa}\right\rangle \prod_{\alpha=1}^{N} \frac{1}{\sqrt{n_{\alpha}!}} \left(a_{\alpha}^{\dagger}\right)^{n_{\alpha}} \left|0\right\rangle\right]$$

where $|\Phi_{\kappa}\rangle$ is a Slater determinant and $\mathbf{n} \equiv (n_1, n_2, \cdots, n_N)$

The electron-nucleus problem in molecular structures: Born-Oppenheimer (Adiabatic) Approximation

1927

 \mathcal{M} 20

ANNALEN DER PHYSIK VIEBTE FOLGE. BAND 84

1. Zur Quantentheorie der Molekeln; von M. Born und R. Oppenheimer

Es wird gezeigt, daß die bekannten Anteile der Terme einer Molekel, die der Energie der Elektronenbewegung, der Kernschwingungen und der Rotationen entsprechen, systematisch als die Glieder einer Potenzentwicklung nach der vierten Wurzel des Verhältnisses Elektronenmasse zu (mittlerer) Kernmasse gewonnen werden können. Das Verfahren liefert u. a. eine Gleichung für die Rotationen, die eine Verallgemeinerung des Ansatzes von Kramers und Pauli (Kreisel mit eingebautem Schwungrad) darstellt. Ferner ergibt sich eine Rechtfertigung der von Franck und Condon angestellten Betrachtungen über die Intensität von Bandenlinien. Die Verhältnisse werden am Beispiel der zweiatomigen Molekeln erläutert.

Historical note, the band theory of crystals appeared in 1928:

"On the quantum mechanics of electrons in crystal lattices", Felix Bloch (1928)

The electron-nucleus problem in molecular structures: Born-Oppenheimer (Adiabatic) Approximation

On the Quantum Theory of Molecules

M. Born^a, J.R. Oppenheimer^b

^aInstitute of Theoretical Physics, Göttingen ^bInstitute of Theoretical Physics, Göttingen

Abstract

It will be shown that the familiar components of the terms of a molecule; the energy of electronic motion, of the nuclear vibration and of the rotation, correspond systematically to the terms of a power series in the fourth root of the ratio of electron mass to (average) nuclear mass. The treatment yields among other things an equation for the rotation, which represents a generalization of the treatment of Kramers and Pauli (top with built-in fly-wheel). Furthermore, there appears a justification of the considerations of Franck and Condon on the intensity of band lines. The relationships are illustrated for the diatomic molecule.

The electron-nucleus problem in molecular structures: Born-Oppenheimer (Adiabatic) Approximation

It is, in principle, an extremely complex problem,

 $\hat{H}_{mol}(r,R)\Psi(r,R) = E\Psi(r,R)$

Therefore one has to make approximations; the most important one is the separation of electronic and nuclear degrees of freedom

based on the fact that $M_n \gg m_e \Rightarrow v_n \ll v_e$

So, nuclear dynamics is put aside for the electronic dynamics.

Start by treating the nuclear momenta (P) and coordinates (R) as classical variables. The electronic problem becomes

$$\left(\hat{T}_e(r) + V_{ee}(r) + V_{eN}(r,R) + V_{NN}(R) \right) \psi_a(r;R) = \varepsilon_a \psi_a(r;R)$$

$$\left(\hat{T}_e(r) + V_{ee}(r) + V_{eN}(r,R) \right) \psi_a(r;R) = (\varepsilon_a - V_{NN}) \psi_a(r;R)$$

Potential Energy Surface (PES): $U_a(R) \equiv \varepsilon_a(R) - V_{NN}(R)$

Potential energy landscape for the electrons in the approximation that nuclear dynamics is "decoupled" from electronic dynamics.

 $\psi_a(r, R) = \langle r, R | \psi_a \rangle$ is called the <u>adiabatic</u> electronic wavefunction

Dynamics on the Potential Energy Surfaces (PES)

A general state of the combined (electronic+nuclei) system can be expanded in terms of the instantaneous (adiabatic) states of $\hat{H}_{el}(r,R)$ as

$$\Psi(r;R) = \sum_{a} \chi_a(R) \psi_a(r,R)$$

In the Born-Oppenheimer Approximation:

$$\Psi(r;R) \approx \chi_a(R,t)\psi_a(r;R)$$

Substitute the BO product state into the TDSE, multiply from left by $\psi_a^*(r; R)$ and integrate over r

$$i\hbar\frac{\partial}{\partial t}\chi_a(R,t) = \langle \psi_a | \hat{H}_{el} | \psi_a \rangle \chi_a(R,t) - \sum_n \frac{\hbar^2}{2M_n} \langle \psi_a(r;R) | \nabla_n^2 \psi_a(r;R) \chi_a(R,t) \rangle$$

$$i\hbar \frac{\partial}{\partial t} \chi_a(R,t) = \varepsilon_a(R) \chi_a(R,t) - \sum_n \frac{\hbar^2}{2M_n} \left[\langle \psi_a | \psi_a \rangle \nabla_n^2 + 2 \langle \psi_a | \nabla_n \psi_a \rangle \nabla_n + \langle \psi_a | \nabla_n^2 \psi_a \rangle \right] \chi_a(R,t)$$

Dynamics on the Potential Energy Surfaces (PES)

Born-Oppenheimer Approximation:

$$i\hbar \frac{\partial}{\partial t} \chi_a(R,t) = \varepsilon_a(R) \chi_a(R,t) - \sum_n \frac{\hbar^2}{2M_n} \left[\langle \psi_a | \psi_a \rangle \nabla_n^2 + 2 \langle \psi_a | \nabla_n \psi_a \rangle \nabla_n + \langle \psi_a | \nabla_n^2 \psi_a \rangle \right] \chi_a(R,t)$$

For systems in stationary state without magnetic fields $\psi_a(r; R) \in \mathbb{R}$;

and $\nabla_n \langle \psi_a | \psi_a \rangle = \langle \nabla_n \psi_a | \psi_a \rangle + \langle \psi_a | \nabla_n \psi_a \rangle = 0$. Therefore $\langle \nabla_n \psi_a | \psi_a \rangle = -\langle \psi_a | \nabla_n \psi_a \rangle = 0$.

 $\langle \psi_a | \nabla_n^2 \psi_a \rangle \chi(R,t)$ is generally disregarded for being a small term.

Thus we end up with the following TDSE for the nuclei in the PSE given by

$$i\hbar\frac{\partial}{\partial t}\chi_a(R,t) = -\sum_n \frac{\hbar^2}{2M_n}\nabla_n^2\chi_a(R,t) + \varepsilon_a(R)\chi_a(R,t)$$

with $\varepsilon_a(R) = \langle \psi_\alpha | \hat{H}_{el}(r, R) | \psi_\alpha \rangle$

Potential Energy Surfaces (PES) photoinduced dynamics

Photochem. Photobiol. Sci., 2010, 9, 1574.

- (a) Jablonski diagram,
- (b) reaction coordinate,
- (c) Potential Energy Surface (PES)
 - Sn = singlet states
 - S0 = ground state
 - Tn = triplet states
 - L1 = lowest triplet
 - R = reactant state
 - Pn = product states
 - I = intermediary state (metastable)
 - $h\nu = photon \ energy$
 - TS = transition state
 - CI = conical intersection (*diabolic intersection*)
 - ISC inter-system crossing

Potential Energy Surface (PES) vs Electronic Band Structure

Methodologies of Non-adiabatic Molecular Dynamics

Assume two particles:

- \succ the light particle with mass m and coordinates r
- the heavy particle with mass *M* and coordinate *R*

The Schrödinger equation for these particles is:

$$i\hbar\frac{\partial}{\partial t}\Psi = \left(-\frac{\hbar^2}{2m}\nabla_r^2 \ -\frac{\hbar^2}{2M}\nabla_R^2 + V(r,R)\right)\Psi$$

The *Ehrenfest Theorem* yields operator R and P of the heavy particle :

$$\frac{d}{dt} \langle R \rangle = \langle P \rangle / M , \qquad \hat{P} = -i\hbar \nabla_R$$
$$\frac{d}{dt} \langle P \rangle = -\langle \nabla_R V \rangle$$

with $\langle \nabla_R V \rangle = \int (\nabla_R V(r, R)) |\Psi(r, R, t)|^2 dr dR$

 $\langle R\rangle$ and $\langle P\rangle$ are the position and momentum of the heavy particle wavepacket.

Derivation of Quantum-Classical MD equations of motion for R and P

$$\langle \nabla_R V \rangle \cong \langle \psi, \nabla_R V(r, \langle R \rangle) \psi \rangle$$

Derivation of Quantum-Classical MD equations of motion for R and P.

• F.A. Bornemann, P. Nettesheim, C. Schütte. J. Chem. Phys. 105, 1074 (1996)

Two approximation steps:

1) separation of electronic and nuclear wavefunctions $\implies \mathcal{O}(\epsilon/L)$

2) short wavelength limit for the nuclei dynamics

 $\implies \mathcal{O}(\epsilon/L) \\ \implies \mathcal{O}(\sqrt{m/M})$

Assuming the separable wavefunction $\Psi(r, R, t)_{\otimes} = \psi(r, t)\chi(R, t)$ $\rightarrow \psi(r, t)$ is the electronic (light particle) wavefunction $\rightarrow \chi(r, t)$ is the nuclear (heavy particle) wavefunction

We get the TDSCF system of equations

$$i\hbar\dot{\psi} = \left(-\frac{\hbar^2}{2m}\nabla_r^2 + \langle\chi, V(r,\cdot)\chi\rangle\right)\psi$$
$$i\hbar\dot{\chi} = \left(-\frac{\hbar^2}{2M}\nabla_R^2 + \langle\psi, V(\cdot,R)\psi\rangle\right)\chi$$

so that

$$i\hbar\frac{\partial}{\partial t}\Psi_{\otimes} = \left(-\frac{\hbar^2}{2m}\nabla_r^2 - \frac{\hbar^2}{2M}\nabla_R^2 + V_{\otimes}(r,R)\right)\Psi_{\otimes}$$

with

$$\mathbf{V}_{\otimes}(r,R) = \langle \chi, V(r,\cdot)\chi \rangle + \langle \psi, V(\cdot,R)\psi \rangle$$

Assume that $m \ll M$, so that χ is an approximate δ function:

$$\chi(R,t)|_{t=t_0} = \frac{1}{\left(\epsilon(t)\sqrt{2\pi}\right)^{2d}} \exp\left(-\frac{|R-\langle R\rangle|^2}{4\epsilon(t)^2}\right) \exp\left(i\frac{\langle P\rangle}{\hbar}R\right)$$

Short wavelength asymptotics dynamics via WKB

$$\chi(R,t) = a(R,t) \exp\left(i\frac{S(R,t)}{\hbar}\right) + \mathcal{O}(\sqrt{m/M})$$

Hamilton-Jacobi equations render the canonical equations

$$\frac{d}{dt} \langle R \rangle = \langle P \rangle / M$$

$$\frac{d}{dt} \langle P \rangle = -\langle \psi, \nabla_R V(r, R) \psi \rangle , \qquad P = \nabla_R S[R(t), t]$$

Thus, we get

$$\langle \nabla_R V \rangle \longrightarrow \nabla_R \langle V(r, \langle R \rangle) \rangle_r$$
$$\int (\nabla_R V(r, R)) |\Psi(r, R, t)|^2 dr dR \longrightarrow \int \nabla_R V(r, \langle R \rangle) |\psi(r, t; R)|^2 dr$$

Hellmann-Feynman force if $\,\psi\,$ is an eigenstate of H_{el} .

Conservation of Energy:

The total energy of the full quantum system in the Ψ state is conserved

$$E(\Psi) = \left\langle \Psi(r,R) \left| -\frac{\hbar^2}{2m} \nabla_r^2 - \frac{\hbar^2}{2M} \nabla_R^2 + V(r,R) \right| \Psi(r,R) \right\rangle = const$$

The Quantum-Classical separation yields:

$$E(\Psi) = \langle \psi(r; R, t) | \hat{H}_{el}(t) | \psi(r; R, t) \rangle + \frac{P(t)^2}{2M} + \Delta E_0 + \mathcal{O}(\epsilon/L + \sqrt{m/M})$$

where L is a typical length and

$$\hat{H}_{el}(t) = -\frac{\hbar^2}{2m}\nabla_r^2 + V(\hat{r}; R(t))$$

become a time-dependent hamiltonian for the quantum system.

$$\Delta E_0 = \frac{d\hbar^2}{8M\epsilon^2}$$
 is the self-energy of the "classical" particle.

The energy of the Quantum-Classical system conserved:

$$E_{QC} = \langle \psi(r; R, t) | \hat{H}_{el}(t) | \psi(r; R, t) \rangle + \frac{P(t)^2}{2M}$$

with the canonical equations: $\dot{R} = \frac{\partial}{\partial P} E_{QC}$ and $\dot{P} = -\frac{\partial}{\partial R} E_{QC}$

Quantum-Classical MD: Example

F.A. Bornemann, P. Nettesheim, C. Schütte. J. Chem. Phys. 105, 1074 (1996)

Model parameters:

M/m = 40 U(r) = A exp(-br) $\epsilon = 0.0075 \text{\AA} x/\text{\AA} \in [-1, 0.5] q/\text{\AA} \in [1, 12]$

For t > t_{max} the the nuclear wavepacket will diffuse.

The equations for the Quantum-Classical Molecular Dynamics become

$$i\hbar \frac{\partial}{\partial t}\psi(r;R,t) = \left(-\frac{\hbar^2}{2m}\nabla_r^2 + V(r;R)\right)\psi(r;R,t) ,$$

$$\dot{R} = P/M , \dot{P} = -\nabla_R \langle \psi(r; R, t) | V(r, R) | \psi(r; R, t) \rangle_r ,$$

Schrödinger Equation light particle

Classical Equations heavy particle

 $\psi(r,t)$ can be a linear combination of adiabatic orbitals:

$$\psi(r,t;R) = \sum_{a} c_{a}(t;R)\phi_{a}(r,t;R) \implies \begin{array}{l} \text{Hellmann-Feynman forces} \\ \text{with Pulay corrections} \end{array}$$
Ehrenfest Dynamics
Problem: average path for single configuration

21

The equations for the Quantum-Classical Molecular Dynamics become

$$i\hbar \frac{\partial}{\partial t}\psi(r;R,t) = \left(-\frac{\hbar^2}{2m}\nabla_r^2 + V(r;R)\right)\psi(r;R,t) ,$$
 Schrödinger Equation

$$\dot{R} = P/M$$
,
 $\dot{P} = -\nabla_R \langle \psi(r; R, t) | V(r, R) | \psi(r; R, t) \rangle_r$, Canonical Equations

The Schrödinger equation describes the dynamics of the quantum particle, whereas the canonical equations describe the dynamics of the "classical" particle.

The approximation fails:

- if the mass M is small;
- if the initial variance E of the heavy wavepacket is not small enough, allowing for dispersion of the wavepacket (like wavepacket in dispersive medium);
- > for long time simulations (t> t_{max}), the wavepacket diffuses;
- if the equation gets multivalued after passing a focal point (conical intersections).

Ehrenfest Dynamics:

$$M\ddot{R} = -\nabla_R \left\langle \psi(r; R, t) | V(r, R) | \psi(r; R, t) \right\rangle_r$$

 $\psi(r,t)$ can be a linear combination of adiabatic orbitals $\psi = \sum_{a} c_a(R,t)\phi_a(r;R,t)$

Ehrenfest classical ionic trajectory

But the real quantum system splits at the PES intersection

Surface Hopping (SH) approach:

• *"Molecular dynamics with electronic transitions"* John C. Tully, J. Chem. Phys. 93(2), 1061, 15 July 1990.

> "The TDSE is solved self-consistently with the classical mechanical equations of motion of the atoms. At each integration time step a decision is made whether to switch electronic states, according to the probalistic fewest switches algorithm (aka "FSSH")."

FSSH atomic trajectories aim to simulate the wave packet propagation

Correcting Shortcomings of Surface Hopping

- Overcoherence problem
- Forbiden hops (or frustrated hops)
- Velocity-reversal
- > Quantum mechanical coherence neglected

Surface Hopping (SH) based approaches

- ODC-FSSH (overlap decoherence correction-FSSH) Granucci, Persico, et al.
- FSTU (fewest-switches with time uncertainty) Truhlar et al.
- DISH (Dicoherence-Induced Surface Hopping) Prezhdo, Akimov, et al.
- A-FSSH (augmented-FSSH) Subotnik, Shevin, et al.
- Surface Hopping by consensus C. Martens
- many more

CSDM = Coherent Switches with Decay of Mixing

Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born–Oppenheimer trajectories

Chaoyuan Zhu, Shikha Nangia, Ahren W. Jasper, and Donald G. Truhlar Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431

Implementation of Coherent Switching with Decay of Mixing into the SHARC Program

Yinan Shu,[⊥] Linyao Zhang,[⊥] Sebastian Mai, Shaozeng Sun,* Leticia González,* and Donald G. Truhlar*

Cite This: J. Chem. Theory Comput. 2020, 16, 3464-3475

😵 Read Online

CSDM = Coherent Switches with Decay of Mixing

Trajectory-Based Methods

Hybrid Quantum-Classical Dynamics:

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(r,R,t) = \left[\frac{\hbar^2}{2m}\nabla_r^2 + \frac{\hbar^2}{2M}\nabla_R^2 + V(r,R)\right]\Psi(r,R,t)$$

Coherent quantum dynamics for the electrons:

$$egin{array}{rcl} \dot{R}_{_N}&=&P_{_N}/M_{_N}\ \dot{P}_{_N}&=&-
abla_{_N}U[R,\Psi(r)] \end{array}$$

Dynemol QM-MM method

Coherent Switches with Decay of Mixing (CSDM)

• Hybrid quantum-classical hamiltonian:

$$\mathbf{H} = \mathbf{T} + \left\{ V^{GS} + \langle \Psi | \mathbf{H}^{eh} | \Psi \rangle \right\} = T + V^{GS} + V^{QM}$$

- Adiabatic representation: $\mathbf{H}^{eh} |\phi\rangle = \varepsilon |\phi\rangle$, $|\Psi\rangle = \sum_i C_i |\phi_i\rangle$, $\mathbf{V}^{QM} = Tr\left[\rho \mathbf{H}^{eh}\right]$
- Electronic density matrix: $ho = |\Psi
 angle\langle\Psi|$

$$\dot{\rho} = \dot{\rho}\big|_{\rm Coh} + \dot{\rho}\big|_{\rm Decoh}$$

- Conservation of energy for the hybrid hamiltonian: $\dot{H} = \dot{T} + \dot{V} = 0$

$$T = \sum_{N} \frac{\vec{P}_N \cdot \vec{P}_N}{2M_N} \Longrightarrow \dot{T} = \sum_{N} \frac{\vec{P}_N}{M_N} \cdot \dot{\vec{P}}_N = \sum_{N} \vec{v}_N \cdot \dot{\vec{P}}_N$$

$$V = V^{GS} + Tr\left[\rho \mathbf{H}^{eh}\right] \Longrightarrow \dot{V} = \dot{V}^{GS} + \dot{V}\big|_{Coh} + \dot{V}\big|_{Dech}$$
³⁰

Coherent Switches with Decay of Mixing (CSDM)

$$\begin{split} \dot{V}^{QM} &= \dot{V}\big|_{\text{Coh}} + \dot{V}\big|_{\text{Dech}} = \sum_{i} \dot{\rho}_{ii} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} \\ &= \sum_{i} \left\{ \dot{\rho}_{ii} \big|_{\text{Coh}} + \dot{\rho}_{ii} \big|_{\text{Dech}} \right\} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} \\ &= \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Coh}} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} + \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i}}_{\dot{V}\big|_{\text{Dech}} E_{i}} \\ &= \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Coh}} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} + \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i}}_{\dot{V}\big|_{\text{Dech}}} \end{split}$$

- Conservation of energy for the hybrid hamiltonian: $\dot{H}=\dot{T}+\dot{V}=0$

$$\begin{aligned} \dot{\mathbf{H}} &= \sum_{N} \vec{v}_{N} \cdot \left(\dot{\vec{P}}_{N} \big|_{\text{Coh}} + \dot{\vec{P}}_{N} \big|_{\text{Dech}} \right) + \dot{V}^{GS} + \dot{V} \big|_{\text{Coh}} + \dot{V} \big|_{\text{Dech}} = 0 \\ &= \left\{ \sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Coh}} + \dot{V}^{GS} + \dot{V} \big|_{\text{Coh}} \right\} + \left\{ \sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Dech}} + \dot{V} \big|_{\text{Dech}} \right\} = 0 \end{aligned}$$

• Coherent electronic dynamics:

$$\dot{V}\big|_{\text{Coh}} = \sum_{i} \rho_{ii} \dot{E}_{i} + \sum_{i} \dot{\rho}_{ii} \big|_{\text{Coh}} E_{i}$$
$$= \sum_{N} \vec{v}_{N} \cdot \left\{ \rho_{ii} \nabla_{N} E_{i} - \sum_{i \neq j} 2\mathbb{R} \left[\rho_{ij} \right] E_{i} \vec{d}_{ij}^{N} \right\}$$

$$\dot{U} = \sum_N \vec{v}_N \cdot \nabla_{\scriptscriptstyle N} U$$

• Ehrenfest Mean-Field Force

$$\vec{F}_{N}^{\text{Ehrenfest}} = -\nabla_{N} V^{QM} = -\rho_{ii} \nabla_{N} E_{i} + \sum_{i \neq j} 2\mathbb{R} \left[\rho_{ij}\right] E_{i} \vec{d}_{ij}^{N}$$

• Energy conservation:

$$\sum_{N} \vec{v}_{N} \cdot \left\{ \vec{F}_{N} \big|_{\text{Coh}} + \nabla_{N} V^{GS} + \nabla_{N} V^{QM} \right\} = 0$$

$$\vec{F}_{\scriptscriptstyle N} \big|_{\rm Coh} = -\nabla_{\scriptscriptstyle N} V^{\rm GS} - \nabla_{\scriptscriptstyle N} V^{QM}$$

Fewest Switches Surface Hopping (FSSH)

• Surface Hopping Force

$$\vec{F}_{N}^{FSSH} = -\nabla_{R_{N}} \langle \phi_{k} | \hat{H} | \phi_{k} \rangle = -\nabla_{R_{N}} E_{k}(\{\vec{R}\})$$
$$\vec{F}_{N} = -\nabla_{N} V^{\text{GS}} - \nabla_{N} E_{k}(R)$$

$$\frac{d\rho_{kk}}{dt} = -\sum_{i \neq k} 2\mathbb{R}\left[\rho_{ik}\right] \left(\sum_{N} \vec{v}_N \cdot \vec{d}_{ik}\right) = \sum_{i \neq k} \dot{\rho}_{ik}$$
$$P_{k \to i} = \max\left(0, -\frac{\dot{\rho}_{ik}dt}{\rho_{kk}}\right)$$

- Nuclear velocity rescaling due to transition $k \rightarrow i$

$$\sum_{N} \frac{\vec{P}_{N}^{2}}{2M_{N}} + E(\phi_{k}) = \sum_{N} \frac{\vec{P'}_{N}^{2}}{2M_{N}} + E(\phi_{i})$$

- Adiabatic or diabatic representation
- Good in strong coupling regions
 Bad in the asymptotics
 (does not satisfy detailed balance)
- Clear physical demonstration

- F_N is given by mean-field approach (time-dependent Hartree method)
- Single continuous trajectory
- Electronic overcoherence

- only adiabatic representation
- Not so good in strong coupling regions good in the asymptotics (satisfies detailed balance)
- Several ad-hoc steps, motivated by computational simplicity
- F_{N} is given by single Pot. Energy Surface

- Ensemble of discontinuous trajectories
- Electronic overcoherence

Coherent Switches with Decay of Mixing (CSDM)

$$\begin{split} \dot{V}^{QM} &= \dot{V}\big|_{\text{Coh}} + \dot{V}\big|_{\text{Dech}} = \sum_{i} \dot{\rho}_{ii} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} \\ &= \sum_{i} \left\{ \dot{\rho}_{ii} \big|_{\text{Coh}} + \dot{\rho}_{ii} \big|_{\text{Dech}} \right\} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} \\ &= \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Coh}} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} + \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i}}_{\dot{V}\big|_{\text{Dech}} E_{i}} \\ &= \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Coh}} E_{i} + \sum_{i} \rho_{ii} \dot{E}_{i} + \underbrace{\sum_{i} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i}}_{\dot{V}\big|_{\text{Dech}}} \end{split}$$

- Conservation of energy for the hybrid hamiltonian: $\dot{H}=\dot{T}+\dot{V}=0$

$$\begin{aligned} \dot{\mathbf{H}} &= \sum_{N} \vec{v}_{N} \cdot \left(\dot{\vec{P}}_{N} \big|_{\text{Coh}} + \dot{\vec{P}}_{N} \big|_{\text{Dech}} \right) + \dot{V}^{GS} + \dot{V} \big|_{\text{Coh}} + \dot{V} \big|_{\text{Dech}} = 0 \\ &= \left\{ \sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Coh}} + \dot{V}^{GS} + \dot{V} \big|_{\text{Coh}} \right\} + \left\{ \sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Dech}} + \dot{V} \big|_{\text{Dech}} \right\} = 0 \end{aligned}$$

Coherent Switches with Decay of Mixing (CSDM)

• Decoherence effect on the electronic dynamics:

$$\sum_{N} \vec{v}_N \cdot \dot{\vec{P}}_N \big|_{\text{Dech}} + \dot{V} \big|_{\text{Dech}} = 0 \qquad \qquad \tau_{ik} = \frac{\hbar}{|E_i - E_k|} \left(1 + \frac{C}{E_{kin}} \right)$$

• Define *Pointer State* "k", so that

$$C_i \longrightarrow C_i e^{-\Delta t/(2\tau_{ik})}, \quad i \neq k$$

$$\begin{split} \dot{\rho}_{ii} \big|_{\text{Dech}} &= -\frac{\rho_{ii}}{\tau_{ik}} < 0 \ , \quad i \neq k \\ \dot{\rho}_{kk} \big|_{\text{Dech}} &= \sum_{j \neq k} \frac{\rho_{jj}}{\tau_{jk}} > 0 \ , \end{split}$$

Decay of Mixing

• *Pointer State* switch (analogous to FSSH):

$$P_{ik} = \max\left(0, -\frac{\dot{\rho}_{ik}dt}{\rho_{ii}}\right) \qquad \qquad \dot{\rho}_{ik} = 2\mathbb{R}\left[\rho_{ik}\right]\left(\sum_{N}\vec{v}_{N}\cdot\vec{d}_{ik}^{N}\right)$$
Coherent Switches with Decay of Mixing (CSDM)

• Decoherence effect on the electronic dynamics:

$$\sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Dech}} + \dot{V} \big|_{\text{Dech}} = 0 \qquad \qquad \sum_{N} \vec{v}_{N} \cdot \dot{\vec{P}}_{N} \big|_{\text{Dech}} = \sum_{i \neq k} \frac{\rho_{ii}}{\tau_{ik}} \left(E_{i} - E_{k} \right)$$
$$\dot{V} \big|_{\text{Dech}} = \sum_{i} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i}$$
$$= \sum_{i \neq k} \dot{\rho}_{ii} \big|_{\text{Dech}} E_{i} + \dot{\rho}_{kk} \big|_{\text{Dech}} E_{k}$$
$$= -\sum_{i \neq k} \frac{\rho_{ii}}{\tau_{ik}} \left(E_{i} - E_{k} \right)$$

• Decoherent force:

$$\vec{F}_N\big|_{\text{Dech}} = \sum_{i \neq k} \frac{\rho_{ii}}{\tau_{ik}} \frac{(E_i - E_k)}{(\sum_N \vec{v}_N \cdot \hat{s}_{ik}^N)} \hat{s}_{ik}^N$$

• Total force on atom N:

$$\vec{F}_{_N} = \vec{F}_{_N} \left|_{\rm Coh} + \vec{F}_{_N} \right|_{\rm Dech} = \vec{F}_{_N}^{\rm Ehrenfest} + \vec{F}_{_N} \left|_{\rm Dech} \right|_{\rm Dech}$$

• Photo induced isomerization of Azobenzene:

Summary: Coherent Switches with Decay of Mixing (CSDM)

Advantages of the CSDM method:

- CSDM combines Mean-Field Ehrenfest and Fewest Switches Surface Hopping;
- No discontinuities in nuclear momentum (due to non-adiabatic hops);
- Total energy is naturally conserved;
- Includes electronic decoherence effects in Mean-Field Ehrenfest;
- Decoherence is weaker at strong coupling regions, allowing for vibronic effects.

DynEMol Method

Dynamics of Electrons in Molecules A Semi-empirical MO method for Large Scale Electronic Quantum Dynamics

DynEMol: tools for studying Dynamics of Electrons in Molecules. https://github.com/lgcrego/Dynemol

Extended Hückel Tight-binding

Extended Hückel theory to *account for the chemical bonding*:

$$H_{ab}^{EHT} = K_{ab} \ S_{ab} \ \frac{h_a + h_b}{2}$$

Atomic Orbitals: Slater-type orbitals (STO)

$$f_a^{STO}(\vec{r} - \mathbf{R}_A(t)) = (\zeta_a)^{n+1/2} \sqrt{\frac{1}{(2n)!}} r^{n-1} \exp\left[-\zeta_a r\right] Y_{lm}(\theta, \varphi)$$

Overlap Matrix:
$$\begin{cases} S_{ab} = \delta_{ab} , & A = B \\ S_{ab}(t) = \langle f_a(\mathbf{R}_A(t)) | f_b(\mathbf{R}_B(t)) \rangle , & A \neq B \end{cases}$$

Sensitive to molecular geometry, short range couplings: cutoff = 12 Å.

- Y_{ml} = Spherical Harmonics;
- K_{ab} = Wolfsberg-Helmholz coupling parameter
- $h_a, h_b \approx$ Valence State Ionization Potentials (VSIPs)
 - ζ = constant related to the effective charge of the nucleus

*Optimize EHT semiempirical parameters

Extended Hückel Tight-binding

Electronic hamiltonian can include short range (SR) and long range (LR) interactions:

short range (**SR**: EHT) + long range (**LR**: ElHI, Polarization, Solvent) interactions:

$$\hat{H}_{el}(R(t)) = \hat{H}^{SR} + \hat{H}^{LR}$$

 $\hat{H}_{el}(R(t)) = \hat{H}^{EHT} + \hat{H}^{El/Hl} + \hat{H}^{Pol} + \hat{H}^{Solvent}$

- $\hat{H}^{EHT} \equiv$ extended Hückel theory
- $\hat{H}^{El/Hl} \equiv$ electron-hole coupling
 - $\hat{H}^{Pol} \equiv$ intramolecular polarization

 $\hat{H}^{Solvent} \equiv \text{Solvent}$

Quantum Dynamics

The time-dependent Schrödinger Equation (TDSE) in the Adiabatic (MO) basis:

$$i\hbar \frac{\partial}{\partial t} \Psi(r; R, t) = \hat{H}_{el} \Psi(r; R, t) ,$$

$$\hat{H}_{el}(\mathbf{R}_t) \phi_n(t) = \mathcal{E}_n(t) \phi_n(t)$$

with $|\Psi(t)\rangle = \sum_n C_n(t) |\phi_n(t)\rangle$

$$\frac{d}{dt} C_n + \sum_m C_m \langle \phi_n | \frac{d}{dt} \phi_m \rangle + \frac{i}{\hbar} \mathcal{E}_n C_n = 0 .$$

Time evolution operator

$$\mathcal{U}(\tau) = \mathcal{T} \exp\left[-i \int_0^\tau \mathcal{H}(\mathbf{R}_t) dt / \hbar\right]$$

 ${\mathcal T}$ is the time ordering operator

Quantum Dynamics

Time evolution operator

$$\mathcal{U}(\tau) = \mathcal{T} \exp\left[-i \int_0^{\tau} \mathcal{H}(\mathbf{R}_t) dt/\hbar\right]$$

 ${\mathcal T}$ is the time ordering operator

Apply the split time-step method for quantum propagation

$$t_j = j\delta t \quad \longrightarrow \quad \mathcal{H}^{(j)} |\phi_n^{(j)}\rangle = \mathcal{E}_n^{(j)} |\phi_n^{(j)}\rangle$$

$$|\Psi(t_{j+1})\rangle = [\mathcal{U}(t_{j+1}, t_j) \dots \mathcal{U}(t_2, t_1) \mathcal{U}(t_1, t_0)]|\Psi(t_0)\rangle$$
$$\mathcal{U}(t_{j+1}, t_j) = \mathcal{U}_{NA}(t_{j+1}, t_j) \mathcal{U}_{AD}(t_j)$$

Quantum Dynamics

 $\mathcal{U}_{AD}|\Psi(t_j)\rangle = \sum_n C_n(t_j) \, \exp\left\{\frac{-i\mathcal{E}_n^{(j)}\delta t}{\hbar}\right\} \, |\phi_n^{(j)}\rangle \quad \Leftarrow \text{Schrödinger pict. contribution}$

 $\mathcal{U}_{NA}|\Psi(t_j)\rangle = \sum_{n,m} \Omega_{mn} \left\{ \langle \phi_n^{(j)} | \Psi(t_j) \rangle \right\} | \phi_m^{(j+1)} \rangle \qquad \Leftarrow \text{Interaction pict. contribution}$

The nonadiabatic coupling term Ω_{mn}

$$\Omega_{mn} = \langle \phi_m^{(j+1)} | \phi_n^{(j)} \rangle \approx \delta_{n,m} + \langle \dot{\phi}_m^{(j)} | \phi_n^{(j)} \rangle \delta t$$

The unitary quantum propagator is solution of the TDSE

$$(t)\rangle = \mathcal{U}(t,0) |\Psi(t_0)\rangle \qquad \qquad \dot{C}_n + \sum_m C_m \langle \phi_n | \dot{\phi}_m \rangle = -\frac{\imath}{\hbar} \mathcal{E}_n C_n$$

JPCL 2015, **6**, 4927.

 $|\Psi|$

State Tracking: Dynemol method

The unitary quantum propagator is solution of the TDSE

 $|\Psi(t)\rangle = \mathcal{U}(t,0) |\Psi(t_0)\rangle$

JPCL 2015, **6**, 4927.

http://luisrego.sites.ufsc.br/wp-content/uploads/2015/12/dynemol.pdf

State Tracking: Dynemol method

$$= \exp\left[-\frac{i}{\hbar}\hat{H}_{n+1}\delta t\right] \left[Q_{n+1}\right]^T \cdot Q_n \exp\left[-\frac{i}{\hbar}\hat{H}_n\delta t\right] \left[\Psi(t)\right]$$

State Tracking: Dynemol method

 $\zeta \approx 1 \text{ Å}^{-1} \implies l\zeta \ll 1 \implies |i^{(n+1)}\rangle \approx |i^{(n)}\rangle$

Classical Nuclear Dynamics in the GS

Molecular Mechanics

$$M\ddot{\vec{R}} = -\nabla_{\vec{R}} \ V_{gs}^{FF}$$

*In this case we keep the charges q_i and q_j fixed.

Benchmarking Dynemol MM

benchmarking the force field: NAMD vs DynEMol

Rhodopsin Protein

	NAMD	DynEMol
	kJ/mol	kJ/mol
bond	1522.6902	1522.7247
angle	4720.2675	4720.3785
Proper dih	13101.2090	13101.4409
improper	175.1565	175.1605
LJ (intra)	-11033.9398	-11034.2266
LJ 1-4	5138.1135	5138.0629
Elect (intra)	-93274.7639	-93276.0724
Elect 1-4	77352.7657	77353.9860

Classical Nuclear Dynamics

We can optimize the Force Field (FF).

Classical Nuclear Dynamics in the ES

Ehrenfest Method: $M\mathbf{R} = -\nabla_{\mathbf{R}} \langle \Psi(\mathbf{r};\mathbf{R},t) | V(\mathbf{r},\mathbf{R}) | \Psi(\mathbf{r};\mathbf{R},t) \rangle_{\mathbf{r}}$ unoccupied $\langle \Psi(\mathbf{r}; \mathbf{R}, t) | V(\mathbf{r}, \mathbf{R}) | \Psi(\mathbf{r}; \mathbf{R}, t) \rangle_{\mathbf{r}} \approx V_{gs}^{FF} + V_{eh}^{QM} \left[\Psi^{el}(t), \Psi^{hl}(t) \right]$ occupied $V_{gs}^{FF} = \sum_{bonds} K_b (R - R_o)^2 + \sum_{angles} K_\theta (\theta - \theta_o)^2 + \sum_{torsions} \sum_{n=0}^{\circ} C_n (\cos\phi)^n$ $+ \sum_{i=1}^{\infty} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{R_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{R_{ij}} \right)^{\circ} \right] + \sum_{i=1}^{\infty} \frac{q_j q_i}{4\pi\epsilon_o R_{ij}}$

*In this case we keep the charges q_i and q_j fixed.

Quantum-Classical Coupling

Quantum energy (E_{QM}) :

$$V_{eh}^{QM}\left[\Psi^{el}(t),\Psi^{hl}(t)\right] = Tr\left[\rho^{eh}\mathbf{H}\right] = \sum_{n} \mathcal{E}_{n}\rho_{nn}^{eh}$$

with, $\rho_{nm}^{eh} = \rho_{nm}^{el} - \rho_{nm}^{hl}$

Force on atom A due to the quantum perturbation V_{eh}^{QM}

$$\mathbf{F}_{A}^{eh} = -\nabla_{R_{A}} V_{eh}^{QM}$$
 Hellmann-Feynman Theorem

$$\frac{dE_{QM}}{d\mathbf{R}_A} = \sum_n |C_n(t)|^2 \frac{d\mathcal{E}_n(t)}{d\mathbf{R}_A} + \sum_n \mathcal{E}_n(t) \left(\frac{dC_n^*(t)}{d\mathbf{R}_A}C_n(t) + C_n^*(t)\frac{dC_n(t)}{d\mathbf{R}_A}\right)$$

Quantum-Classical Coupling

From

$$\frac{dE_{QM}}{d\mathbf{R}_A} = \sum_n |C_n(t)|^2 \frac{d\mathcal{E}_n(t)}{d\mathbf{R}_A} + \sum_n \mathcal{E}_n(t) \left(\frac{dC_n^*(t)}{d\mathbf{R}_A}C_n(t) + C_n^*(t)\frac{dC_n(t)}{d\mathbf{R}_A}\right)$$

Total force (AD + NA) between atom pair A and B,

in the **Extended Hückel formalism**, is

$$\mathbf{F}_{AB} = -2\sum_{a \in A} \sum_{b \in B} \langle f_b | \nabla f_a \rangle \quad \times \quad \left\{ \sum_n \rho_{nn}^{eh} \left(\chi_{ab} - \mathcal{E}_n \right) Q_b^n Q_a^n + \sum_{m > n} \mathbb{R} \left(\rho_{nm}^{eh} \right) \left[\left(\chi_{ab} - \mathcal{E}_m \right) Q_a^n Q_b^m + \left(\chi_{ba} - \mathcal{E}_n \right) Q_b^n Q_a^m \right] \right\}$$

the extended Hückel hamiltonian is given by $H_{ab} = \chi_{ab} S_{ab}$,

with
$$\chi_{ab} \equiv K_{ab} \frac{h_a + h_b}{2}$$
. Adiabatic states: $HQ_n = \mathcal{E}_n SQ_n$

JPCC 2016, **120**, 27688.

Benzene – Intramolecular Vibrational Relaxation (IVR)

J. Phys. Chem. C 2016, 120, 27688

Benzene: Energy balance in Vibrational Relaxation

Excitation Energy $E^{el} = \sum \mathcal{E}_n(t) |C_n^{el}(t)|^2$ $E^{hl} = \sum \mathcal{E}_n(t) |C_n^{hl}(t)|^2$

Total Quantum-Classical Energy

Benzene – Intramolecular Vibrational Relaxation (IVR)

Check: comparisson with high-level theory

J. Phys. Chem. C 2016, 120, 27688

Azobenzene – Photoinduced Isomerization

Applications: molecular photoswitch

Bandara & Burdette, Chem.Soc. Rev. 2012,1809

Photoisomerization mechanism

Azobenzene – Photoinduced Isomerization

J. Phys. Chem. C 2016, 120, 27688

Azobenzene – Photoinduced Isomerization

Check: comparisson with high-level theory

Azobenzene in Methanol solution

Concerted Photoisomerization of Stilbene

VDOS

the *trans→cis* torsion

H-C=C-H dihedral drives the C-C=C-C isomerization

Time-dependent Vibrational Spectra $C_v(t) = \frac{\sum_i m_n \vec{v}_n(0) \cdot \vec{v}_n(t)}{\sum_i m_n \vec{v}_n(0) \cdot \vec{v}_n(0)}$ $g_{\tau}(\omega, t) = \left| \int_{t_0}^{t_f} C_v(t') \exp\left[-\frac{(t'-t)^2}{2\tau^2} \right| e^{-i\omega t'} dt' \right|$ ⁽ⁱⁿe 0.5) 1000 1500 2000 2500 3000 frequency (cm⁻¹) 500

J. Phys. Chem. C 2016, 120, 27688

Excited State Intramolecular Proton Transfer

- - proton is transferred in the excited-state.
 - proton returns as soon as excited-state decays.
 - theoretical PT efficiency is not as high as experimental one.

- Morse potential for the O-H and N-H bonds $V_{ij} = D_{ij} \left[1 e^{(-\beta_{ij}(R_{ij} R_0))} \right] .$
- O-N distance is constrained by harmonic bond potential.
- all other bonds by standard MM-FF.

Excited State MD in the *Diabatic Representation*

The time-dependent Schrödinger Equation (TDSE) in the Diabatic (atomic) basis:

$$i\hbar \frac{\partial}{\partial t} \Psi(r; R, t) = \hat{H}_{el} \Psi(r; R, t) , \quad \text{with} \quad |\Psi(t)\rangle = \sum_{\alpha} A_{\alpha}(t) |f_{\alpha}\rangle$$

Expand the quantum propagator in Recursive Taylor Expansion:

$$\Psi(t_{j+1}) = \prod_{j=0} \mathcal{U}(t_{j+1}, t_j) \Psi(t_0) ,$$

$$\Psi(t + \delta t) \approx \Psi(t) + \sum_{k=1}^{K} \left(\frac{-i\delta t}{\hbar k}\right) \mathcal{H}^{(j)} \Psi_{k-1}$$

$$\mathcal{H}^{(j)} \equiv \mathcal{H}(j\delta t) \qquad \Psi_0 \equiv \Psi(t) \quad \text{and} \quad \Psi_k = -i\delta t / (\hbar k) \mathcal{H}^{(j)} \Psi_{k-1}$$

D. Hoff and LGCR, *Chemical Modelling*: v.10, chapter 14 (2014).

Excited State MD in the *Diabatic Representation*

Expand the quantum propagator in Recursive Taylor Expansion:

$$\Psi(t+\delta t) \approx \Psi(t) + \sum_{k=1}^{K} \left(\frac{-i\delta t}{\hbar k}\right) \mathcal{H}^{(j)} \Psi_{k-1}$$

For the nonorthogonal Slater-type orbitals (STO): $HQ_n = \mathcal{E}_n SQ_n$

Left Hand Side

$$\mathbf{Q}^T S S^{-1} \mathcal{H} = \mathbf{E} \mathbf{Q} S$$
$$\mathbf{Q}' \mathcal{H}' = \mathbf{E} \mathbf{Q}' ,$$

$$\begin{split} & \langle \Psi(t+\delta t)| \\ \approx \quad \sum_{\alpha} \left\langle \alpha^{(j)} \right| \left\{ c_{\alpha}^{\mathcal{L}}(t) - i \frac{\delta t}{\hbar} \sum_{k=1}^{K} \frac{1}{k} \left[c_{k-1}^{\mathcal{L}}(t) \mathcal{H}'(t) \right]_{\alpha} \right\} \\ \approx \quad \sum_{\alpha} \left\langle \alpha^{(j)} \right| c_{\alpha}^{\mathcal{L}}(t+\delta t) \;, \end{split}$$

Right Hand Side

$$S^{-1}\mathcal{H}\mathbf{Q} = S^{-1}S\mathbf{Q}\mathbf{E}$$
$$\mathcal{H}'\mathbf{Q} = \mathbf{Q}\mathbf{E}$$

$$|\Psi(t+\delta t)\rangle \approx \sum_{\alpha} \left\{ c_{\alpha}^{\mathcal{R}}(t) - i \frac{\delta t}{\hbar} \sum_{k=1}^{K} \frac{1}{k} \left[\mathcal{H}'(t) c_{k-1}^{\mathcal{R}}(t) \right]_{\alpha} \right\} |\alpha^{(j)}\rangle \\ \approx \sum_{\alpha} c_{\alpha}^{\mathcal{R}}(t+\delta t) |\alpha^{(j)}\rangle .$$

Interfacial Electron Transfer (IET)

Hellmann-Feynman forces become a **bottleneck**

Х

$$\mathbf{F}_{AB} = -2\sum_{\alpha,\beta} \langle \alpha | \nabla \beta \rangle$$

$$\left\{ \sum_{n} \rho_{nn}^{eh} \left(\chi_{ab} - \mathcal{E}_n \right) Q_b^n Q_a^n + \sum_{m>n} \mathbb{R} \left(\rho_{nm}^{eh} \right) \left[\left(\chi_{ab} - \mathcal{E}_m \right) Q_a^n Q_b^m + \left(\chi_{ba} - \mathcal{E}_n \right) Q_b^n Q_a^m \right] \right\}$$

The Hellman-Feynman forces in diabatic representation become

$$\mathbf{F}_{AB} = -2\sum_{\alpha,\beta} \langle \alpha | \nabla \beta \rangle \left\{ \chi \circ \rho_{\mathbb{R}} + \mathcal{H}' \rho_{\mathbb{R}} \right\}_{\beta \alpha} ,$$

with $(A \circ B)_{\beta\alpha} = A_{\beta\alpha}B_{\beta\alpha}$ and $\rho_{\mathbb{R}} \equiv \rho_{\mathbb{R}}^{AO}$

Interfacial Electron Transfer (IET)

Hellmann-Feynman forces become a **bottleneck**

Х

$$\mathbf{F}_{AB} = -2\sum_{\alpha,\beta} \langle \alpha | \nabla \beta \rangle$$

$$\left\{ \sum_{n} \rho_{nn}^{eh} \left(\chi_{ab} - \mathcal{E}_n \right) Q_b^n Q_a^n + \sum_{m>n} \mathbb{R} \left(\rho_{nm}^{eh} \right) \left[\left(\chi_{ab} - \mathcal{E}_m \right) Q_a^n Q_b^m + \left(\chi_{ba} - \mathcal{E}_n \right) Q_b^n Q_a^m \right] \right\}$$

The Hellman-Feynman forces in diabatic representation become

with $(A \circ B)_{\beta\alpha} = A_{\beta\alpha}B_{\beta\alpha}$ and $\rho_{\mathbb{R}} \equiv \rho_{\mathbb{R}}^{AO}$

in the GPU $\sim 20 \times \text{faster}$ than propagation in Adiabatic basis with identical results

NAMD through Conical Intersection

Energy Conservation

Nonadiabatic Molecular Mechanics with Charge Transfer and Excitation Dynamics

Push-Pull AZO compounds and Dye Sensitizers

JPC Lett., 2018, 9, 5926.

Nonadiabatic Molecular Mechanics with Charge **Transfer and Excitation Dynamics**

G-09					
EHT					
	HOMO-2	HOMO-1	НОМО	LUMO	LUMO+1

	↓ ↓ ↓ ↓ ↓

LUMO+2

Frontier Orbitals	DFT/B3LYP/6-31G(d)	DynEMol-EHT
LUMO - HOMO	3.14	2.97
HOMO - [HOMO-1]	0.81	0.67
LUMO - [HOMO-1]	3.78	3.63
[LUMO+1] - LUMO	1.70	1.81

72

D.P.Hoffman& R.A.Mathies PCCP, 2012,6298

Vauthey et al., PCCP, 2018, 7254

Push-Pull AZO compounds and Dye Sensitizers

J. Phys. Chem. C, 2019

J. Phys. Chem. C, 2019

Dependence of single-molecule junction conductance on molecular conformation

Latha Venkataraman^{1,4}, Jennifer E. Klare^{2,4}, Colin Nuckolls^{2,4}, Mark S. Hybertsen^{3,4} & Michael L. Steigerwald²

Acknowledgements

Former students

- Robson O. Silva
- Alberto Torres
- Diego Hoff
- Kewin Sachtleben
- Graziani Candiotto
- Luciano Rostirolla
- Graziele Bortolini
- Arthur Anderman

Funding Agencies:

