DynEMol code Dynamics of Electrons in Molecules

Luis G. C. Rego Department of Physics Federal University of Santa Catarina

Dynemol: general information

github.com/lgcrego/Dynemol

DynEMol: Dynamics of Electrons in Molecules Igcrego

- Department of Physics, Federal Univesity...
- ☑ luis.gc.rego@gmail.com
- http://luisrego.sites.ufsc.br/

ピ master →	<mark>អ 3 b</mark> ranches	🛇 0 tags
Switch branches/	tags	×
Find or create a	a branch	
Branches T	ags	
✓ master		default
SingleNode		
alpha-SO		
Vie	ew all branches	

Languages

Dynemol: general information

Supported branches:

- Master: hybrid MPI / openMP / GPU version
- SingleNode: openMP / GPU version
- Alpha-SO: alpha version of SingleNode with focus in Spin effects

Compiling Dynemol

OS of choice: Linux

Compiler of choice: Intel oneAPI 2022 = Base Toolkit + HPC Toolkit

Compilation options:

make (dynemol) - standard compilation

make safe - compilation with safe features

make *debug* - adds flag -g for debugging

make serial - remove all parallelization flags

make gdb - prepare code to GDB (equivalent to debug + serial) analysis

make *vtune* - prepare code to intel-Vtune analysis

make + edit CUDA configurations in the makefile

Running Dynemol

Setup environment variables:

```
export DYNEMOLDIR= "path to dynemol executable directory"
```

export DYNEMOLWORKDIR= \$(pwd)

In directory **\$DYNEMOLWORKDIR**:

- have the appropriate input files for the job
- for execution directions: edit file card.inpt
- Run \$DYNEMOLDIR/dynemol

Hybrid MPI + openMP mode on SLURM

> export OMP_NUM_THREADS=\$SLURM_CPUS_PER_TASK

> srun \$DYNEMOLDIR/dynemol

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

	EXECUTION	CONTROL
DRIVER =		! <== q_dynamics , avrg_confgs , Genetic_Alg , diagnostic , slice_{Cheb, AO, FSSH, CSDM} , MM_Dynamics
Survival	=	! <== .TRUE. for any dynamics simulation
DP_Moment	=	! <== .TRUE. or .FALSE. ; dipole moment fragment must be especified ad-hoc
QMMM	=	<pre>! <== .TRUE. for Non-Adabatic simulations; couples electronic and nuclear dynamics</pre>
OPT_parms	=	! <== .TRUE. for reading OPT_basis parameters from "opt_eht_parms.input"
ad_hoc	=	! <== .TRUE. for using ad hoc tuning of parameters
Band_structur	e =	! <== .TRUE. for static band-structure calculations
STR	UCTURE-FILE	input FORMAT
nuclear matte	-	L colusted ave avtended ave MDunamics
file type	r =	<pre>! <== solvaled_sys , extended_sys , mDynamics</pre>
file_type	=	<pre>! <== Structure or trajectory ; default = Structure </pre>
TILE_TORMAL	=	! <== xyz , pub or vasp ; delautt = pub
generate conj	oc of the c	vetem by reflection
generate copi	es or the s	ystem by reflection
$nnx = 0 \cdot nn$	v = 0	<pre>L <== (nnx nny) = (extended) REAL conjes on each side</pre>
·····× = • • , ·····	y – 0	$V_{\text{max},\text{max}} = (C_{\text{max},\text{max}}) = (C_{\text{max}})$
		: integers, keep format , default = (0,0)
Periodic Boun	darv Condit	ions
- el loure boun	dary condit	
$PBC = \begin{bmatrix} 0 & 0 \end{bmatrix}$. 0 1	$! \leq = PBC replicas : 1 = ves . 0 = no$
		! Integers, keep format, default = (0.0.0)

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

For instance:

QDynamics parame	ters
t_i = t_f = n_t =	<pre>! <== default = 0.d0 ! <== final time in PICOseconds (Real) ! <== number of time steps (Integer)</pre>
n_part =	! <== # of particles to be propagated: default is e=1 , e+h=2 ; default = 2
hole_state = char*3:Intege	r
	<pre>! <== GROUND STATE calcs = 0 (ZER0) ! <== case STATIC & DP_calcs = hole state of special FM0 ! <== case DYNAMIC = intial MO for < HOLE > wavepacket in DONOR fragment</pre>
electron_state = char*3:In	teger ! <== char*3 = 3-letter fragment or residue ; Integer = MO of frag/res
	<pre>! <== case STATIC & DP_calcs = excited state of special FM0 ! <== case DYNAMIC = intial MO for < ELECTRON > wavepacket in DONOR fragment</pre>
LCMO =	<pre>! <== .TRUE. for initial wavepackets as Linear Combination of Molecular Orbitals (LCMO) ! <== default = .FALSE.</pre>
SAMPLING paramet	ers and SECURITY COPY
CT_dump_step =	<pre>! <== step for saving El&Hl survival charge density (Integer); default = 1</pre>
<pre>frame_step =</pre>	! <== step for avrg_confgs and time-slice dynamics ; frame_step =< size(trj) ; default = 1
restart = step_security =	<pre>! <== .TRUE. for restarting dynamics ! <== step for saving backup files ! <== default = 100 (QMMM) ; 1000 (MM)</pre>

8

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

DIAGNOS	TIC & DAT	A-ANALYSIS & VISUALIZATION flags
HFP_Forces	=	! <== .TRUEfor QMMM calcs and .FALSE. otherwise; Hellman-Feynman-Pulay forces
SPECTRUM Alpha_Tensor	=	! <== .TRUE. for absorption spectrum calculations ! <== .TRUE. for polarizability calcs; Embeded Finite Field Polarizability
GaussianCube GaussianCube_step	=	! <== .TRUE. for generating cube files for MO visualization ! <== time step for saving Gaussian Cube files (Integer)
NetCharge CH_and_DP_step	=	<pre>! <== .TRUE. for dumping charge Occupancy in pdb format ! <== time step for saving charge and Induced DP values (Integer) ! <== pdb format: charge> Occupancy ; DP> next to occupancy</pre>
DensityMatrix AutoCorrelation VDOS_	= = =	<pre>! <== .TRUE. for generating data for postprocessing with manipulate program ! <== .TRUE. for generating data for postprocessing with manipulate program ! <== .TRUE. velocity DOS data for postprocessing with manipulate program</pre>
POTENTI	ALS	
EnvField_ = Environ_Type =		<pre>! <== .TRUE. for using electrostaic Potential produced by Environment ; default = .FALSE. ! <== choose from { Ch_MM , DP_QM , DP_MM }; ! <== Ch_MM = point charges ; dipoles: { DP_QM , DP_MM } ! <== DP_MM = dipole moment from classical point charges ! <== DP_QM = dipole moment from quantum MO</pre>
Environ_step =		<pre>! <== step for updating EnvField (Integer) ; default = 5</pre>
Coulomb_ =		<pre>! <== .TRUE. for dipole potential for solvent molecules ; default = .FALSE.</pre>
Induced =		! <== .TRUE. for induced dipole potential

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

For instance:

!	DOS calculations
! sigma =	! <== Gaussian broadening of DOS peaks in eV (Real) ; default = 0.04
DOS_range	<pre>= real_interval(min , max) ! <== (min,max) Real values; defines energy range of DOS calculations</pre>
!	SPECTRUM calculations
occupied empty	<pre>= real_interval(min , max) ! <== (min,max) Real values; defines energy range of occupied MOs = real_interval(min , max) ! <== (min,max) Real values; defines energy range of empty MOs</pre>

Genetic_Alg and CG OPTIMIZATION parameters

Pop Size	=	Integer	ļ	<==	Population size of candidate solutions for Genetic-Algorithm (Integer)
N generations	=	Integer	ļ	<===	number of iterations (Integer)
Pop range	=	Real	ļ	<===	range of variation of parameters [0:1] (Real)
selection by	=		ļ	<===	option = {roullete,ranking,sorting}; fitness selection method
Mutation rate	=	Real		<==	range of variation of parameters [0:1] (Real)
Adaptive	=	Logical		<==	true -> Adaptive GA method; gradually tights cost function on-the-fly (Logical)
Mutate Cross	=	Logical		<==	false -> pure Genetic Algorithm ; prefer false for fine tunning! (Logical)
CG	=	Logical	ļ	<==	for using CONJUGATE GRADIENT method on Top_Selection after genetic algorithm (Logical)
Top_Selection	=	Integer	ļ	<==	top selection to undergo CG
profiling	=	Logical	ļ	<==	generates analysis of the optimization process

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

! MOLE	ECULAR MECHANICS parameters
	SYSTEM INFO
N_of_molecules = N_of_species =	! <== total number of molecules (Integer) ! <== total number of species (Integer)
repeat the following informat: attention: KEEP FORMAT	ion filling for all the different species
<pre>species(1) % residue = species(1) % N_of_molecules = species(1) % N_of_atoms = species(1) % flex =</pre>	! <== Residue label for species 1 ; character(len3) ! <== Number of molecules of species (Integer) ! <== Number of atoms comprosing a single molecule of species i (Integer) ! <== .TRUE. for Flexible ; .FALSE. for rigid
<pre>species(2) % residue = species(2) % N_of_molecules = species(2) % N_of_atoms = species(2) % flex = .</pre>	! <== Residue label for species 2 ; character(len3) ! <== Number of molecules of species (Integer) ! <== Number of atoms comprosing a single molecule of species i (Integer) ! <== .TRUE. for Flexible ; .FALSE. for rigid
species(n) % residue = species(n) % N_of_molecules = species(n) % N_of_atoms = species(n) % flex =	<pre>! <== Residue label for species n ; character(len3) ! <== Number of molecules of species (Integer) ! <== Number of atoms comprosing a single molecule of species i (Integer) ! <== .TRUE. for Flexible ; .FALSE. for rigid</pre>
Selective_Dynamics =	! <== .TRUE. for ad_hoc_MM_tuning of MegaMass to selected atoms ; default = .FALSE

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

ENVIRONMEN	IT parameters		
thermostat =	! <== choose from { Berendsen, Nose_Hoover, Microcanonical }		
temperature = pressure =	! <== Bath Temperature (K) , (Real) ; default = 300 ! <== Pressure in atm , (Real) ; default = 1		
<pre>thermal_relaxation_time =</pre>	! <== Temperature coupling term with the bath (Real) ! <== SMALL = STRONG coupling ; use "infty" to decouple ! <== picosecond ; default 0.25		
<pre>pressure_relaxation_time =</pre>	! <== Pressure coupling term (Real) ! <== SMALL = STRONG coupling ; use "infty" to decouple ! <== picosecond ; default = infty		
cutoff_radius = damping_Wolf =	<pre>! <== Cut off radius (Angs.) for electrostatic and LJ interactions (Real) ; default = 50. ! <== damping parameter (Angs.^-1) ; default value = 0.001 ! <== Wolf's method damping parameter (length^{-1}) ; (J. Chem. Phys. 1999; 110(17):8254) ! <== relevant quantity: R_c*Wolf ~</pre>		
EXECUTION	INFO		
driver_MM =	! <== choose from { MM_Dynamics , MM_Optimize , NormalModes , Parametrize }		
<pre>read_velocities =</pre>	! <== .TRUE. for reading the initial velocities : T_ , F_ ; default = .TRUE.		
<pre>MM_input_format =</pre>	! <== choose from { GMX, NAMD, GAFF } ; GMX = OPLS , GAFF and NAMD = Amber		
MM_log_step =	! <== step for saving MM results & parameters (Integer) ; default = 50		
MM_frame_step =	! <== step for saving MM results & parameters (Integer) ; default = 50		
Units_MM =	! <== choose OUTPUT energy units: eV or kj-mol ; default = eV		

• Check the file "\$DYNEMOLDIR/card_file_formats" for guidance

AD-HOC settings	
(ad hoc = true)	
ad hoc:QM MM:feature(start:end) = fixing	! <== QM MM = QM or MM (apply settings to either realm)
ad hoc:QM MM:feature(start:end) = fixing	<pre>! <== feature = {residue , nr , fragment , V shift , etc}; check types</pre>
ad_hoc:QM_MM:feature(start:end) = fixing	! <== (start:end) range of change, end >= start; atom index
	! <== fixing, depends on feature: 3-letter label, int_value, or real_value

Running Dynemol

In directory **\$DYNEMOLWORKDIR**:

• have the appropriate input files for the job:

(* mandatory)

- card.inpt *
- input.pdb * <== system coordinates
- velocity.inpt
- force-field related files
- opt_eht_parms.inpt

Running Dynemol

In directory **\$DYNEMOLWORKDIR**:

- Outputs , results , log-files , security-files , etc. are stored in:
 - \$DYNEMOLWORKDIR/ancillary.trunk/
 - \$DYNEMOLWORKDIR/dos.trunk/
 - \$DYNEMOLWORKDIR/dyn.trunk/
 - \$DYNEMOLWORKDIR/log.trunk/
 - \$DYNEMOLWORKDIR/MO.trunk/
 - \$DYNEMOLWORKDIR/opt.trunk/
- which are deleted and made anew at every execution.
- each directory gets a copy of <u>card.inpt</u> for future reference.

Example: DNA strand in water + counter ions

Example: DNA strand in water + counter ions

H2O.psf

_								
P <u>SF</u>								
	1 !NTIT	LE						
REMAR	KS segment	: TIP						
	3 INATOM	_						
	1 SYS	1	TIP3	0H2	OW	-0.834000		16.0000
	2 SYS	1	TIP3	H1	HW	0.417000		1.0080
	3 SYS	1	TIP3	H2	HW	0.417000		1.0080
	3 !NBOND:	bonds						
	2 1	L	3	1		3	2	
	0 INTHETA:	angles						
	0 !NPHI: d	lihedrals	5					
	0 !NIMPHI:	imprope	ers					
	0 !NDON: d	lonors						
	0 !NACC: a	acceptors	5					

Files:

- input.pdb
- DNA.psf
- Na+.psf
- H2O.psf
- input.prm

Photochemistry in Solution

Example: Azobenzene Molecule in Ethanol

	PACTION flags DRIVER = slice_A0	
	QMMM = true nuclear_matter = MDynamics file_type = structure file_format = pdb	
	PBC = [1 , 1 , 1]	
	electron_state = AZ0:35 hole_state = AZ0:33	
	t_f = 1.0d0 ! n_t = 100000	<== final time in PICOseconds
ļ	SYSTEM INFO	
	N_of_molecules = 119 ! N_of_species = 2 !	<== total number of molecules <== total number of species
	<pre>species(1) % residue = COH ! species(1) % N_of_molecules = 118 ! species(1) % N_of_atoms = 6 ! species(1) % flex = true :</pre>	<pre><== Residue label for species 1 <== Number of molecules of species 1 <== # of atoms in a molecule of species 2 <== Flexible : true , false</pre>
	<pre>species(2) % residue = AZO ! species(2) % N_of_molecules = 1 species(2) % N_of_atoms = 24 species(2) % flex = true</pre>	<== Residue label for species 2
ļ	AD-HOC settings	
	OPT_parms = true ad_hoc = true ad_hoc:QM:QMMM(1:708)=MM	
!		
	thermostat = Microcanonical ! <== H	Berendsen, Nose_Hoover, Microcanonical
	cutoff_radius = 9.d0 ! <== 0 damping_Wolf = 0.0032d0 ! <== 0	Cut off radius (Angs.) for LR interactions damping parameter (Angs.^-1)
	GENERAL INFO	
	driver_MM = MM_Dynamics read_velocities = true MM input_format = GMX	

Input Files:

- input.pdb
- AZO.itp
- COH.itp
- topol.top
- velocity.inpt
- opt_eht_parms.input

Hybrid MPI + openMP mode on SLURM

Example: Azobenzene Molecule in Ethanol

# cpus (cores)	nodes	ntasks/node	ntasks	cpus/task	Time/(1000 iteration steps)
96	4	1	4	24	144 seconds
96	4	2	8	12	85.7 seconds
96	4	3	12	8	77.4 seconds

Photochemistry in Solution

Example: Azobenzene Molecule in Ethanol

J. Phys. Chem. C 2016, 120, 27688 J. Phys. Chem. C 2011, 115

• input.prm

Example: Dye-sensitized semiconductor

DBB.psf

1	INTITLE						
EMARKS DB	B=Perylene	e_Dye_type	eB_tert-B	utyl			
64	INATOM!						
1	SYS	1	DBB	CA	CA	0.108060	12.011
2	SYS	1	DBB	CA	CA	-0.256800	12.011
3	SYS	1	DBB	CA	CB	0.015126	12.011
61	SYS	1	DBB	HC	HC	0.041699	1.008
62	SYS	1	DBB	HC	HC	0.038063	1.008
63	SYS	1	DBB	TI	TI	2.1960	47.8671
64	SYS	1	DBB	TI	TI	2.1960	47.8671

Files:

- input.pdb
- DBB.psf
- CCC.psf
- input.prm

Example: Dye-sensitized semiconductor

CCC.psf

REI	MARKS (1 !NTI CCC=Ti	ITLE 102 clust	er				
	1		гом					
	1 4.		: 1	ccc	тт	тт	2 1960	47 867
	2	575	, 1		TT	TT	2 1960	47.867
	-		, <u> </u>				2.1500	
	478	SYS	5 1	CCC	0	0	-1.0980	15.999
	479	SYS	5 1	ССС	0	0	-1.0980	15.999
	Θ	!NBON	ID: bonds	5				
	Θ	!NTHE	TA: angl	.es				
	Θ	!NPHI	: dihedr	als				
	Θ	!NIMP	PHI: impr	opers				
	31	! AD-H	HOC: flex	c				
	74	TI	true					
	136	0	true					
	204	0	true					
	71	TI	true					
	192	0	true					
	132	0	true					
	78	TI	true					
	326	0	true					
	266	0	true					
			+ 5110					
	111	0	true					
	265	0	true					

Files:

- input.pdb
- DBB.psf
- CCC.psf
- input.prm

Example: Dye-sensitized semiconductor				F	=iles:	VH	
				•	input.pdb	-2745	
				•	DBB.psf	-HAK	(
				•	CCC.psf	J L.	
				•	input.prm		
 !		ENVIRONMENT	parameters				
! thermos	tat	= Microcanonical	! <== Bere	ndsen, Nose_Hoover,	Microcanonical		
tempera	ture	= 300.d0	! <== Bath	Temperature (K)			
thermal	_relaxation_tim	ne = 5.d-1	! <== Temp ! <== SMAL	erature coupling te L = STRONG ; use "=	rm with the bath infty" to decouple		
cutoff_ damping	radius _Wolf	= 50.d0 = 0.0005	! <== Cut ! <== damp	off radius (Angs.) ing parameter (Angs	for electrostatic and .^-1)	LJ interactions	
: ! !		GENERAL	INF0				
driver_	ММ	= MM_Dynamics	! <== MM_D	ynamics , MM_Optimi;	ze , NormalModes , Pa	rametrize	
read_ve	locities	= true	! <== read	s the initial veloc:	ities : T $_$, F $_$		
MM_inpu	t_format	= GAFF	! <== GMX,	NAMD, GAFF			
MM_log_	step	= 50	! <== step	for saving MM resu	lts & parameters		
MM fram	e step	= 100	! <== step	for saving MM resu	lts & parameters		24

7-1

Thermalization

! <== reads the initial velocities : T_ , F_

Example: Dye-sensitized semiconductor

thermostat	= Berendsen	= Berendsen, Nose_	Hoover, Microcanonical
temperature	= 300.d0	= Bath Temperature	e (K)
thermal_relaxation_time	e = 7.d-1	= Temperature coup = SMALL = STRONG ;	oling term with the bath use "= infty" to decouple
read_velocities	= false	= reads the initia	al velocities : T $_$, F $_$

1 1 bland

> mv velocity_MM.out velocity_MM.inpt
> \$DYNEMOLDIR/dynemol resume

read velocities = true

Example: Dye-sensitized semiconductor

- Photoinduced electron transfer from DBB:LUMO \rightarrow TiO2 cluster
- Photoexcited electron to DBB:LUMO
- Hole in DBB:HOMO
- Atoms at fixed positions
- PBC in the (x,y) plane

	ACT	ION flag	5
DRIVER = q_dyna	amics		
<pre>survival nuclear_matter file_type file_format</pre>	<pre>= true = extended_sys = structure = pdb</pre>		! <== structure or trajectory ! <== xyz , pdb or vasp
PBC = [1 , 1	, 0]		
<pre>electron_state hole_state</pre>	= DBB:84 = DBB:83		
t_f = 0.5d0 n_t = 1000			! <== final time in PICOseconds
	AD-HOC	settings	
OPT_parms = tru ad_hoc = true ad_hoc:QM:resic ad_hoc:QM:nr(63 ad_hoc:QM:V_sh	ue due(63:64)=CCC 3:64)=2 ift(1:62)=0.6		
	DOS se	ttings	
sigma = 0 DOS_range = rea	.040d0 al_interval(-15.d	0 , 0.d0)	!

Example: Dye-sensitized semiconductor

- Ad-hoc settings:
 - > Dynemol reads opt_eht_parms.input
 - Ti atoms 63:64 belong to TiO2 cluster (CCC)
 - Energy offset (V_shift) of DBB fragment orbitals with respect to CCC

	ACTION	flags
DRIVER = q_dynamics		
<pre>survival = true nuclear_matter = extended_sys file_type = structure file_format = pdb</pre>	5	! <== structure or trajectory ! <== xyz , pdb or vasp
PBC = [1 , 1 , 0]		
electron_state = DBB:84 hole_state = DBB:83		
t_f = 0.5d0 n_t = 1000		! <== final time in PICOseconds
AD	-HOC setti	ings
<pre>OPT_parms = true ad_hoc = true ad_hoc:QM:residue(63:64)=CCC ad_hoc:QM:nr(63:64)=2 ad_hoc:QM:V_shift(1:62)=0.6</pre>		
DOS	5 settings	5
sigma = 0.040d0 DOS_range = real_interval(-:	15.d0 , 0	! d0)

Example: Dye-sensitized semiconductor

- Energy DOS settings:
 - calculates Total DOS (TDOS.dat)
 - calculates DOS projected on residues ("resname"-PDOS.dat)
 - results written in dos.trunk

		<i>f</i> l
	ACTION	flags
DRIVER = q_dynam	nics	
survival = nuclear_matter = file_type = file_format =	= true = extended_sys = structure = pdb	! <== structure or trajectory ! <== xyz , pdb or vasp
PBC = [1 , 1 ,	0]	
electron_state = hole_state =	= DBB:84 = DBB:83	
t_f = 0.5d0 n_t = 1000		<pre>! <== final time in PICOseconds</pre>
	AD-HOC sett	ings
OPT_parms = true ad_hoc = true ad_hoc:QM:residu ad_hoc:QM:nr(63: ad_hoc:QM:V_shif	e ue(63:64)=CCC 64)=2 ft(1:62)=0.6	
	DOS setting	S
sigma = 0.0 DOS_range = real	040d0 L_interval(-15.d0 , 0	! .d0)

Example: Dye-sensitized semiconductor

Finite-Size Spurious Artifacts

Notice: not cost-effective

Electron Propagation in Chiral nanowire

Inorganic Double Helices in Semiconducting SnIP

"Chirality-Induced Propagation Velocity Asymmetry", Nano Lett., 2021.

Example: Dye-sensitized semiconductor

Orbital Rendering of Charge Dynamics

DRIVER = q_dynamics	ACTION	flags
<pre>survival = true nuclear_matter = extended_ file_type = structure file_format = pdb</pre>	sys	! <== structure or trajectory ! <== xyz , pdb or vasp
nnx = 0; $nny = 0$		
PBC = [1 , 1 , 0]		
electron_state = DBB:79 hole_state = DBB:78		
t_f = 0.2d0 n_t = 200		! <== final time in PICOseconds
	AD-HOC sett	ings
<pre>OPT_parms = true ad_hoc = true ad_hoc:QM:residue(52:53)=C ad_hoc:QM:nr(52:53)=2 ad_hoc:QM:V_shift(1:51)=0.</pre>	6	
	VISUALIZATI	ON flags
GaussianCube = true GaussianCube_step = 40	! <== ge ! <== ti	nerating cube files for MO visualization me step for saving Gaussian Cube files

J. Phys. Chem. C 2021, 125, 8667

Example: Dye-sensitized semiconductor

Average over conformations

		ACTION	flags		
DRIVER = avrg_	confgs				
survival nuclear_matter file_format	= true = extended_sy = pdb	s !	<== xyz , pdb or vasp		
file_type frame_step	= trajectory = 1	!	<== structure or trajectory <== step for avrg_confgs ; frame step =< size(tri) : default = 1		
nnx = 1; $nny = 0$					
PBC = [1 , 1	, 0]				
electron_state hole_state	electron_state = DBB:84 hole_state = DBB:83				
t_f = 0.5d0 n_t = 1000		!	<== final time in PICOseconds		
	AD	-HOC sett	ings		
<pre>OPT_parms = tru ad_hoc = true ad_hoc:QM:resid ad_hoc:QM:nr(60 ad_hoc:QM:V_sh</pre>	ue due(63:64)=CCC 3:64)=2 ift(1:62)=0.6				
	DO	S setting	<u>S</u>		
sigma = 0 DOS_range = re	.040d0 al_interval(-	15.d0 , 0	.d0)		

Input File:

• frames.pdb

Example: Dye-sensitized semiconductor

Non-adiabatic Electron Transfer Dynamics

DRIVER = sli	ACTION fl	ags ! <== Ehrenfest QMMM
QMMM = tr survival = tr	ue	
nuclear_matter = M file_type = st file_format = pd	Dynamics ructure b	
PBC = [1 , 1 , 0]	
electron_state = D hole_state = D	BB:66 BB:65	
t_f = 0.20 n_t = 10000		<pre>! <== final time in PICOseconds</pre>
	SYSTEM INFO	
N_of_molecules = 2 N_of_species = 2		<pre>! <== total number of molecules ! <== total number of species</pre>
<pre>species(1) % resid species(1) % N_of_ species(1) % N_of_ species(1) % flex</pre>	ue = DBB molecules = 1 atoms = 45 = true	<pre>! <== Residue label for species 1 ! <== # of molecules of species 1 ! <== # of atoms in a molecule of species ! <== Flexible : true , false</pre>
<pre>species(2) % resid species(2) % N_of_ species(2) % N_of_ species(2) % flex</pre>	ue = CCC molecules = 1 atoms = 479 = false	! <== Residue label for species 2
	AD-HOC set	tings
OPT_parms = true ad_hoc = true ad_hoc:QM:residue(ad_hoc:QM:nr(45:46	45:46)=CCC	
ad hoc:OM:V shift(1:44)=0.6	

Example: Dye-sensitized semiconductor

Non-adiabatic Electron Transfer Dynamics

		ENVIRONMENT	parameters
thermostat	=	Microcanonical	! <== Berendsen, Nose_Hoover, Microcanonical
cutoff_radius damping_Wolf	=	50.d0 0.0005	! <== Cut off radius (Angs.) for electrostatic ! <== damping parameter (Angs.^-1)
driver_MM	=	MM_Dynamics	! <== MM_Dynamics , MM_Optimize , NormalModes , Parametrize
read_velocities	=	true	
MM_input_format	=	GAFF	! <== GMX, NAMD, GAFF

Example: Dye-sensitized semiconductor

Non-adiabatic Electron Transfer Dynamics

J. Phys. Chem. C 2021, 125, 8667

Example: Dye-sensitized semiconductor

Non-adiabatic Electron Transfer Dynamics on **rigid** structutures

Similar behavior for rigid structutures

J. Phys. Chem. Lett. 2018, 9, 5926.J. Phys. Chem. C 2019, 123, 5692.J. Phys. Chem. Lett. 2015, 6, 2393.

Sample card.inpt

<pre>DRIVER = slice_Cheb</pre>	ACTION TLAGS ! <== sl:	ice_[Cheb, A0, FSSH, CSDM]
QMMM = true survival = true nuclear_matter = MDyn file_type = struc file_format = pdb	amics ture	! <== structure or trajectory ! <== xyz , pdb or vasp
PBC = [1 , 1 , 0]		
electron_state = AZD: hole_state = AZD: t_f = 1.50 n_t = 75000	92 89	! <== final time in PICOseconds
SYSTEM INFO		
N of molecules = 2		! <== total number of molecules
N_of_species = 2		<pre>! <== total number of species</pre>
<pre>species(1) % residue species(1) % N_of_mol species(1) % N_of_ato species(1) % flex</pre>	= AZD ecules = 1 ms = 68 = true	<pre>! <== Residue label for species 1 ! <== # of molecules of species 1 ! <== # of atoms in a molecule of species 1 ! <== Flexible : true , false</pre>
<pre>species(2) % residue species(2) % N_of_mol species(2) % N_of_ato species(2) % flex</pre>	= CCC ecules = 1 ms = 383 = false	! <== Residue label for species 2
!	AD HOC setting	
OPT_parms = true ad_hoc = true ad_hoc:QM:residue(67: ad_hoc:QM:nr(67:68)=2	68)=CCC	gs
	ENVIRONMENT para	meters
thermostat	= Microcanonical	<pre>! <== Berendsen, Nose_Hoover, Microcanonical</pre>
cutoff_radius	= 50.d0	<pre>! <== Cut off radius (Angs.) for electrostatic</pre>
damping_Wolf	= 0.001	<pre>! <== damping parameter (Angs.^-1) </pre>
read velocities	= MM_Dynamics	<pre>! <== mm_Dynamics , mm_Optimize , Normalmodes , Parametrize </pre>
MM_input_format	= GMX	! <== GMX, NAMD, GAFF

Dependence of single-molecule junction conductance on molecular conformation

Latha Venkataraman^{1,4}, Jennifer E. Klare^{2,4}, Colin Nuckolls^{2,4}, Mark S. Hybertsen^{3,4} & Michael L. Steigerwald²

43

JPC Lett., 2018, **9**, 5926. 45

Acknowledgements

Have contributed to the DynEMol Project:

- Robson O. Silva
- Alberto Torres
- Diego Hoff
- Graziele Bertolini
- João V. Meyer

