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Solving the Time-Dependent Schrodinger Equation (TDSE)
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Solving the Time-Dependent Schrodinger Equation (TDSE)

Fixed-Grid Trajectory-Based
Multi-Configurational Time-Dependent Hartree Ab Initio Multiple Spawning
Matching Pursuit/Split Operator Fourier Transform Ab Initio Multi-Configurational Ehrenfest
Basis Expansion Leaping Multi-Configuration Gaussian Adaptive Trajectory-Guided Scheme
MCTDH: Chem. Phys. Lett., 1990, 165, 73-78 AIMS: J. Phys. Chem. A., 2000, 104, 22, 5161-5175
MP/SOFT: J. Chem. Phys., 2004, 121, 1676-1680 AlI-MCE: J. Chem. Phys., 2012, 137, 22A5006
BEL-MCG: J. Chem. Phys., 2018, 149, 134113 aTG: J. Chem. Theor. Comput., 2017, 13, 3085-3096
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Quantum Trajectory-guided Adaptable Gaussian
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Quantum Trajectories
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JANUARY 15, 1952

A Suggested Interpretation of the Quantum Theory in Terms of ‘‘Hidden” Variables. I

Davip Boum*
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

(Received July 5, 1951)

The usual interpretation of the quantum theory is self-con-
sistent, but it involves an assumption that cannot be tested
experimentally, #z., that the most complete possible specification
of an individual system is in terms of a wave function that deter-
mines only probable results of actual measurement processes.
The only way of investigating the truth of this assumption is by
trying to find some other interpretation of the quantum theory in
terms of at present “hidden” variables, which in principle deter-
mine the precise behavior of an individual system, but which are
in practice averaged over in measurements of the types that can
now be carried out. In this paper and in a subsequent paper, an
interpretation of the quantum theory in terms of just such
“hidden” variables is suggested. It is shown that as long as the
mathematical theory retains its present general form, this sug-
gested interpretation leads to precisely the same results for all

physical processes as does the usual interpretation. Nevertheless,
the suggested interpretation provides a broader conceptual frame-
work than the usual interpretation, because it makes possible a
precise and continuous description of all processes, even at the
quantum level. This broader conceptual framework allows more
general mathematical formulations of the theory than those
allowed by the usual interpretation. Now, the usual mathematical
formulation seems to lead to insoluble difficulties when it is ex-
trapolated into the domain of distances of the order of 107 c¢cm
or less. It is therefore entirely possible that the interpretation sug-
gested here may be needed for the resolution of these difficulties.
In any case, the mere possibility of such an interpretation proves
that it is not necessary for us to give up a precise, rational, and
objective description of individual systems at a quantum level of
accuracy.

1. INTRODUCTION

HE usual interpretation of the quantum theory is

based on an assumption having very far-reaching
implications, viz., that the physical state of an in-
dividual system is completely specified by a wave
function that determines only the probabilities of actual
results that can be obtained in a statistical ensemble of
similar experiments. This assumption has been the
object of severe criticisms, notably on the part of
Einstein, who has always believed that, even at the
quantum level, there must exist precisely definable
elements or dynamical variables determining (as in
classical physics) the actual behavior of each individual
system, and not merely its probable behavior. Since
these elements or variables are not now included in the
quantum theory and have not yet been detected experi-
mentally, Einstein has always regarded the present

tions have as yet been suggested. The purpose of this
paper (and of a subsequent paper hereafter denoted by
IT) is, however, to suggest just such an alternative
interpretation. In contrast to the usual interpretation,
this alternative interpretation permits us to conceive
of each individual system as being in a precisely de-
finable state, whose changes with time are determined
by definite laws, analogous to (but not identical with)
the classical equations of motion. Quantum-mechanical
probabilities are regarded (like their counterparts in
classical statistical mechanics) as only a practical
necessity and not as a manifestation of an inherent
lack of complete determination in the properties of
matter at the quantum level. As long as the present
general form of Schroedinger’s equation is retained, the
physical results obtained with our suggested alternative
interpretation are precisely the same as those obtained

de Broglie - Bohm Mechanics

Bohm, D., A suggested interpretation of the quantum theory in terms of
"hidden" variables. Physical Review, 1952, 85 (2), 166-179

David Bohm

Louis de Broglie

https://en.wikipedia.org/wiki/Louis de Broglie
https://en.wikipedia.org/wiki/David Bohm
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tions have as yet been suggested. The purpose of this
paper (and of a subsequent paper hereafter denoted by
IT) is, however, to suggest just such an alternative
interpretation. In contrast to the usual interpretation,
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of each individual system as being in a precisely de-
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de Broglie - Bohm Mechanics
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Polar wavefunction w/ real amplitude A(x,t)
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Time-dependent Schrodinger Equation
(TDSE)

V20 + V(x)W

Trajectory position and momentum
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Adaptable Gaussians

N Basis View
: Ay [ 1/4 Ay [ 2
g =[] ( . ) exp ( 5 (Tv — Quk)” + k(@0 — QV,k))
vr=1

Ng-dimensional Gaussian basis function with position (q), phase (p),
and width (a) parameters
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al Ay [ 1/4 Ay [ 2
g =[] ( . ) exp ( 5 (Tv — Quk)” + k(@0 — QV,k)>
v=1

Ng-dimensional Gaussian basis function with position (q), phase (p),
and width (a) parameters

Ny

p(x,t) = > cr(t)gn(x,1)

k=1

Generic wavefunction constructed from Gaussian basis functions,
each multiplied by a complex amplitude c(t)
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Basis View
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Quantum Trajectory-guided Adaptable Gaussians

Wavefunction View

Basis Functions
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J u p y t e r dyn_params {Python dictionary of dynamics parameters}
\ / model_params {Python dictionary of potential parameters}
O

Basic User Interface
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plot.plotting_fxn()

O
'A compute_model()

J u py e r compute.run_qgtag( )
O
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Basic User Interface
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O
compute_model()
J u py e r compute.run_qgtag( )

plot.plotting_fxn()
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O
Y compute_model()

J u py e r compute.run_qgtag( )
O

plot.plotting_fxn()

Libra
QTAG
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Basic User Interface
Method Details
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O
Y compute_model()

J u py e r compute.run_qgtag( )
O

plot.plotting_fxn()

Basic User Interface
Method Details

Libra

Q TAG Stae 2

S e e e
State 1
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@
N compute_model()
__ J u py e r compute.run_qgtag( )

plot.plotting_fxn()

1. Computing Basis Coefficients Method Detalls

2. Updating Trajectory Parameters

Compute Overlap Matrix Elements

v

Compute Hamiltonian Matrix Elements

v

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Solve Eigenvalue Problem HZ=SZ¢

v

Update Basis Coefficients from Eigenvalues/
vectors

Update Positions

v

Compute Time Overlap Matrix Elements
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1. Computing Basis Coefficients

Compute Overlap Matrix Elements

v

Compute Hamiltonian Matrix Elements

v

Solve Eigenvalue Problem HZ=SZ¢&

v

Update Basis Coefficients from Eigenvalues/
vectors

src/dyn/qtag/qgtag.cpp
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1. Computing Basis Coefficients

(gi |9j>

Compute Overlap Matrix Elements S 1]

v

Compute Hamiltonian Matrix Elements

v

Solve Eigenvalue Problem HZ=SZ¢&

v

Update Basis Coefficients from Eigenvalues/
vectors

src/dyn/qtag/gtag.cpp
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1. Computing Basis Coefficients

Compute Overlap Matrix Elements S 1] <g 2 |g J >

v

Compute Hamiltonian Matrix Elements H 1] — < [0) ‘K - V\g j>
+ (single-surface)

Solve Eigenvalue Problem HZ=SZ¢ H i = < gi ‘ ch l | gg>
+ (multi-surface)

Update Basis Coefficients from Eigenvalues/
vectors

src/dyn/qtag/gtag.cpp
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1. Computing Basis Coefficients

Compute Overlap Matrix Elements S 1] <g 2 |g J >

v

Compute Hamiltonian Matrix Elements H 1] — < [0) ‘K - V|g j>
* (single-surface)

ntraj

®
4
4
4
(4
4
&
e ©

Solve Eigenvalue Problem HZ=SZ¢ H i = < gi ‘ ch l | 93>

v (multi-surtace) Hamiltonian Matrix
Update Basis Coefficients from Eigenvalues/ “l HA and BAT

vectors . .
approximations to
potential surface

src/dyn/qtag/gtag.cpp
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1. Computing Basis Coefficients

Compute Overlap Matrix Elements S 1] <g 2 |g J >

v

Compute Hamiltonian Matrix Elements H 1] — < [0) ‘K - V|g j>
* (single-surface)

*®
4
4
4
(4
4
L
e ©

Solve Eigenvalue Problem HZ=SZ¢ H i = < gi ‘ ch l | 93>

v (multi-surtace) Hamiltonian Matrix
Update Basis Coefficients from Eigenvalues/ “l HA and BAT

vectors ~0) Z(O)exp(—iE(O) At) (Z(O) )Tb(O) approximations to
potential surface

(projection onto initial wavepacket)

src/dyn/qtag/gtag.cpp
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions

v

Compute Time Overlap Matrix Elements
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions

v

Compute Time Overlap Matrix Elements

Questions:

. Quantum trajectories notorious for

being unstable; how can we address
this”?

. Trajectory momentum defined by

CyberTraining Workshop Summer 2022

wavefunction; how do we propagate
unpopulated surface trajectories?
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions

v

Compute Time Overlap Matrix Elements

Questions:

. Quantum trajectories notorious for

being unstable; how can we address
this”?

. Trajectory momentum defined by

wavefunction; how do we propagate
unpopulated surface trajectories?

Solutions:

. Many options, we choose fitting of

trajectory momenta to stabillize.

. Currently, ‘empty’ trajectories are

CyberTraining Workshop Summer 2022

synchronized to their populated
counterparts
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction o o ®

State 3
v

Update Basis Parameters {p,a,s}

+ - e e e
Update Positions State 2

v

Compute Time Overlap Matrix Elements

S e e e
State 1
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions

v

Compute Time Overlap Matrix Elements
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions

v

Compute Time Overlap Matrix Elements

d
Sii = (g 1g5")

In total...
N

Zp(m, NT) — (g(Nl))T( H Kﬁn—l)s(n—l,n—Q)

n—2

ntra]

a {000000000)
g;gg g[T(Zféifvm/m
Qiidr = Q¢ + dt X pi/m
1000888000]

——

P SESHE
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