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• Quasiparticle equation, self-energy, and the GW approximation

• First-principles GW method

• Success and challenges of the GW method

Outline

2



"The underlying physical laws necessary for

the mathematical theory of a large part of

physics and the whole of chemistry are thus

completely known, and the difficulty is only

that the exact application of these laws leads

to equations much too complicated to be soluble.” 

- Paul Dirac (1929)

Materials properties from first-principles 
- A Hard Problem



The many-body problem

• The Hamiltonian of a solid (any solids) is “trivial”

• But solving the Schrodinger equation for a solid is hopelessly difficult

• The use of the Born-Oppenheimer approximation decouples the motion of 
electrons from that of atoms, but we still have a many-electron problem
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Materials properties from first-principles: 
Difficulties and efforts

• Early efforts:

- Hartree approximation:

- Hartree-Fock: 

- Slater: Replaces the nonlocal exchange with a local potential
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All these efforts relay on the wave functions.



Density functional theory (DFT)

• In a paper published in 1964, Hohenberg and Kohn proved that the 

energy of a many-electron system is a universal functional of its charge 

density

• In particular, the ground state energy of a many-electron system can be 

expressed as a universal functional of its ground state charge density

• The proof of this highly nontrivial fundamental theorem turns out to be 

surprisingly simple.
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• In fact, the concept of “density functional” can be traced back to 1920’s.  

- In the Thomas-Fermi method, the electron density plays a central role.

• The Slater Xa potential can be regarded as an early version of LDA.

• DFT: Hohenberg and Kohn, 1964

- The local electronic charge density can serve as a fundamental
variable for solving many-body problems.

• Local density approximation (LDA): Kohn and Sham, 1965

- Makes DFT useful and has been applied to various systems with great 
success.

Density Functional Theory:
Electron Density as a Fundamental Variable



• The success of the DFT-LDA is rather unexpected

• The "failure" of DFT-LDA: the DFT bandgap “problem”

• The occupied band width of Na is significantly overestimated 
- 3.2 eV (LDA) vs 2.5 eV (exp)

"we do not expect an accurate description of the chemical 
bonding” (within the LDA).  - Kohn and Sham, 1965

LDA(eV) Exp (eV)

diamond 3.9 5.48

Silicon 0.52 1.17

Germanium ~0 0.74

LiC 6.0 9.4

KS orbital energies are fictitious parameters; they 

cannot be interpreted as the quasiparticle energies. 

The DFT band gap problem



But what is the (quasiparticle) 
band gap

• Take, for example, a band structure of 
Si (often calculated using DFT methods)

• We can “calculate” the direct gap at G, 
indirect minimum gap, etc, by taking 
the energy difference between valence 
and conduction states

• What about experiment? How do we 
measure the “band gap”, or more 
general, how do we measure the band 
structure of a solid?

• What are quasiparticles?
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• In an interacting system (e.g., electrons in a solid), what is the 
meaning of one-particle states?

• Consider an electron moving in a solid: Electron will considerably 
distort the charge distribution of its surrounding as it moves.  

(1) Pauli exclusion principle (exchange hole, or fermi hole)

(2) Coulomb repulsion  (Coulomb hole,  or correlation hole)

(3) Electron will also cause distortions of ions (lattice) 

• All these effects (interactions) introduce a positive charge cloud 
(or depletion of negative charge), i.e, a hole, around an electron
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Quasiparticles
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• We are not dealing with just a bare electron but an electron 
dressed with a positive polarization cloud

• The quasiparticles energy now has both real and imaginary parts: 

Quasiparticle: 

electron + polarization cloud

QP energy:

non-interacting + self-energy
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Quasiparticles and the self-energy

• How do we measure these quasiparticle states?
• How do we calculate this self-energy



• How do we measure “band structures”?

Occupied  (valence) states                   

N to N-1 particles                             

Unoccupied (conduction) states

N to N+1 particles    

Measuring the (quasiparticle)band structures
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• Quasiparticle energy of occupied state s:

• Quasiparticle energy of unoccupied state s:

• (minimum) Quasiparticle band gap

• The quasiparticle gap is actually related to the total energies of 
three different systems with N, N-1, and N+1 particles!

• Clearly, one cannot use the Kohn-Sham DFT eigen values to 
calculate the quasiparticle band gap (or more general, the 
quasiparticle band structure)
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Quasiparticle gap of a hydrogen atom
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• Quasiparticle concept, quasiparticle band structure and band gap

• Quasiparticle equation, self-energy, and the GW approximation

• First-principles GW method

• Success and challenges of the GW method
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Green function

• Green function (GF) contains spectral information on single-
particle excitations changing the number of particles by one:

With quasiparticle amplitudes:
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Green function

• The poles of the GF give the corresponding excitation energies. 

• The spectral function

gives the quasiparticle density of states (DOS)

• For non-interacting systems (like KS systems), the spectral 
function is just the DOS calculated from the KS eigen states.
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Dyson equation and self-energy

• The Dyson equation: Relation between the bare and dressed 
propagators and the self-energy

• G0 is just the propagator of the non-interacting particle

• And G is call full propagator
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• Another form of Dyson equation: Quasiparticle equation

• The self-energy contains all effects of e-e interactions

• Compare with the Kohn-Sham equation

• One of the difficulties of quasiparticle calculations is that the self-
energy is  nonlocal, non-Hermitian, and energy dependent.

nHamiltoniaelectron  One  :
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Quasiparticle equation

• Approximation to the self-energy:

- The Hartree-Fock approximation:

- The LDA approximation:
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• Hedin's equations for the self-energy

- Has to be solve iteratively (self-consistently)

- Extremely difficult!
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• The GW approximation:





G


+=G

G= +

)4567()3;67()75()46(
)45(

)12(
)13()12()3;12(

)34()3;42()14()31()12(

dGG
G

dGWi






2 1)12(

)13()12()3;12( =G )12()21()12( GiW +=

2 1GW

The GW approximation

21



• Still, G is the fully-interacting one-body Green function; one 
still has to solve the following equations self-consistently (and 
it turns out to be a bad idea to do so):

• The G0W0 approximation
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• Quasiparticle concept, quasiparticle band structure and band gap

• Quasiparticle equation, self-energy, and the GW approximation

• First-principles GW method

• Success and difficulties of the GW method
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Hybertsen and Louie, 1986

KS mean-field 

calculation

Dielectric 

function
 v−=1

One particle 

Green function G
Self-energy

iGW=

RPA

vW 1−= 

First-principles GW method
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• Formally, the electron self-energy within the GW approximation 
can be written as

• The screened Coulomb interaction in momentum space:
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• A critical step in first-principles GW method is the calculation of the 
dielectric matrix, therefore the screened Coulomb interaction W

• In the exercise, we will not calculate the full frequency-dependent 
dielectric matrix (or screened Coulomb interaction). 

• Instead, we will use the so-called Hybertsen-Louie generalized 
plasmon pole (HL-GPP) model to extend the calculated static 
dielectric matrix to finite frequencies

• More details can be found in 
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PRB 34, 5390 (1986)
Compt. Phys. Commun. 183, 1269 (2012)
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• The static dielectric function is related to the (irreducible) electron 
polarizability

via 

where

and                          are the KS eigenvalue and the Fermi occupation 
function of state  
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• We have now all ingredients to calculate the electron self-energy
• The quasiparticle energy of a given state:

• Still, the self-energy has to be calculated at the quasiparticle 
energy, which we do not know until we calculate the self-energy!

• If the self-energy                                                               is a slow-
varying function of , we can carry out a first-order expansion:

where
and  

is called quasiparticle renormalization factor
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The BerkeleyGW package (https://berkeleygw.org/)

Computer Physics Communications 183, 1269 (2012) 29
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ninteractio Coulomb screened :

function Green electron :

||

W

G

iGW

knVknE

GW

xc

KS

kn

QP

kn

=

−+=


 

=GW

G

W

Hedin, 1965; Hybertsen and Louie, 1986

LDA (eV) GWA(a) (eV) Exp (eV)

diamond 3.9 5.6 5.48

Silicon 0.52 1.29 1.17

Germanium ~0 0.75 0.74

LiC 6.0 9.1 9.4

Typical accuracy of ab initio G0W0 methods: ~ 0.1 – 0.2 eV

Success of the GW method
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• The band gap of InN was found to be 0.7 ~ 0.8 eV in 2002!

By experimentalists!!! Previously “accepted” value was 1.9 eV

- What have theorists been doing???

• ZnO: LDA band gap: 0.7 eV

- Earlier GW calculations by several groups:  1.5 ~ 2.5 eV

- Experimental gap: ~ 3.6 eV

• CuCl: LDA band gap: 0.32 eV

- “Straightforward” GW calculations give Eg < 2.0 eV
- Experiment: 3.4 eV

• GWA does not work for these materials?

• The devil is in the detail: Convergence behavior of several 

truncation parameters has to be carefully examined!

Not all materials are “GW friendly”
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• The dielectric function:

• Two truncation parameters in practical calculations

- Number of conduction bands (Nc) included in the summation 

- Kinetic energy cutoff (Gcut) for the dielectric matrix

• In practical calculations, truncations are almost always applied

- Nc number of conduction bands needed to converge the GW 
results scales with the system volume

- Nc and anc Gcut are both highly materials dependent

The dielectric function
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• The self-energy is usually decomposed into two terms

where

- The summation in principle should include all conduction bands

The Coulomb-hole self-energy
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• Two important cutoff parameters: 

- Band summation 

- Kinetic energy cutoff of the dielectric matrix

• The convergence issue in GW calculations is well recognized but 
often “ignored” (sometimes intentionally)

- Hard to perform convergence tests for all GW calculations

- For some materials (e.g., Si, Ge), GW results may converges 
quickly

- For others (e.g. ZnO, MgO, CuCl), unconverged results may 
lead to false predictions and/or wrong  interpretations

Convergence issues in GW calculations
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Previous result

PRL 105, 146401 (2010)

experiment

Quasiparticle Gap of ZnO (LDA+U/GW)
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Quasiparticle gap of MgO

Previous results

Scientific Reports 6, 36849 (2016). 37



Quasiparticle gap of CuCl

experiment

10,000 bands for a 
two-atom system!?

A few 
hundred 
bands

PRB 98, 045108 (2018) 38



Systems with d-states

• GW calculations for systems involving localized d states and oxides 
are particular challenging due to the computational costs (high 
cutoffs and large number of bands), the slow convergence, and 
the poor DFT description of the correlated d electrons

• Fortunately, with our newly developed accelerated methods 
(more later) and the development of combined DFT+U and GW, 
we are now able to accurate predict the quasiparticle properties 
of oxides (ZnO discussed earlier, SrTiO3, BaTiO3, SrZrO3, etc) 



Systems with d-states



Quasiparticle band structures of STO and BTO



Systems with d-states



Hybrid organic-inorganic perovskites

• One of the difficulties of calculating the quasiparticle properties 
of hybrid perovskites is random orientations if the organic 
molecule and the structure distortions – need large unit cells and 
average over many distorted structures



Quasiparticle band gap of MAPbI3

PRB 93, 085202 (2016)



• (Forget about ZnO or CuCl) For a 2-atom MgO, we need about 
1,000 conduction bands to converge the result

• Suppose we are interest in a system containing 200 atoms 
(e.g, a supercell containing a defect), we will need 

to achieve the same level of convergence

• Not only calculating the wave functions is hard (if possible), 
but storing these wave functions is extremely problematic, not 
to mention the subsequent GW calculations

GW calculations for large systems?
High-throughput GW calculations?

bands conduction  000,100)2/200(1000 =
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