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Materials properties from first-principles
- A Hard Problem

"The underlying physical laws necessary for
the mathematical theory of a large part of
physics and the whole of chemistry are thus
completely known, and the difficulty is only

| that the exact application of these laws leads
to equations much too complicated to be soluble.”
- Paul Dirac (1929)




The many-body problem

I
 The Hamiltonian of a solid (any solids) is “trivia
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* But solving the Schrodinger equation for a solid is hopelessly difficult
HY({r}{R;}) = EY({r}{R;})
\

Electron lon coordinates
coordinates

* The use of the Born-Oppenheimer approximation decouples the motion of
electrons from that of atoms, but we still have a many-electron problem



Materials properties from first-principles:
Difficulties and efforts

HW:[ZN:(_EVE—M ZL )+EZ = ly =Ey
1 2 j=1 |Fi—Rj | 2 i#] |Fi_Fj|

E=<y[H]|y>

 Early efforts:

- Hartree approximation: W (ry.f,,....T ) = o, (F )@, (T,) - (T )

- Hartree-Fock: y(X;,X,,...,Xy) = det| ¢ (X)) @,(X;) - ¢y (Xy)

[+ VRV 0 () + [V (P () = 5 ()

- Slater: Replaces the nonlocal exchange with a local potential

[—%Vz V() AV (F) 4V (P (F) = .0, (F)

All these efforts relay on the wave functions.




Density functional theory (DFT)

E =< (5, [, Ty | H ¥, 5, T) >

p(F)=N[ly(F, 5, ) [ diy---dF,

* In a paper published in 1964, Hohenberg and Kohn proved that the
energy of a many-electron system is a universal functional of its charge
density

E =E[p]

* In particular, the ground state energy of a many-electron system can be
expressed as a universal functional of its ground state charge density

E,=E[p,] (Ground state energy)

» The proof of this highly nontrivial fundamental theorem turns out to be
surprisingly simple.



Density Functional Theory:
Electron Density as a Fundamental Variable

* |n fact, the concept of “density functional” can be traced back to 1920’s.
- In the Thomas-Fermi method, the electron density plays a central role.

 The Slater Xa potential can be regarded as an early version of LDA.

 DFT: Hohenberg and Kohn, 1964
- The local electronic charge density can serve as a fundamental
variable for solving many-body problems.
e Local density approximation (LDA): Kohn and Sham, 1965

- Makes DFT useful and has been applied to various systems with great
success.




The DFT band gap problem

e The success of the DFT-LDA is rather unexpected

"we do not expect an accurate description of the chemical
bonding” (within the LDA). - Kohn and Sham, 1965

e The "failure" of DFT-LDA: the DFT bandgap “problem”

LDA(eV) Exp (eV)

diamond 3.9 5.48
Silicon 0.52 1.17
Germanium ~0 0.74
LiC 6.0 9.4

e The occupied band width of Na is significantly overestimated
- 3.2 eV (LDA) vs 2.5 eV (exp)

KS orbital energies are fictitious parameters; they
cannot be interpreted as the quasiparticle energies.




But what is the (quasiparticle)

band gap

Take, for example, a band structure of
Si (often calculated using DFT methods)

We can “calculate” the direct gap at I,
indirect minimum gap, etc, by taking
the energy difference between valence
and conduction states

What about experiment? How do we
measure the “band gap”, or more

general, how do we measure the band
structure of a solid?

What are quasiparticles?




Quasiparticles

e |[n an interacting system (e.g., electrons in a solid), what is the
meaning of one-particle states?

e Consider an electron moving in a solid: Electron will considerably
distort the charge distribution of its surrounding as it moves.

(1) Pauli exclusion principle (exchange hole, or fermi hole)
(2) Coulomb repulsion (Coulomb hole, or correlation hole)
(3) Electron will also cause distortions of ions (lattice)

* All these effects (interactions) introduce a positive charge cloud
(or depletion of negative charge), i.e, a hole, around an electron

+
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Quasiparticles and the self-energy

 We are not dealing with just a bare electron but an electron
dressed with a positive polarization cloud

Quasiparticle:
electron + polarization cloud i

QP energy: ‘ ‘ ‘

non-interacting + self-energy

* The quasiparticles energy now has both real and imaginary parts:

( 0 z
gnlz o gnlz T nk

anE — A(c;mz + IFnE

* How do we measure these quasiparticle states?
* How do we calculate this self-energy



Measuring the (quasiparticle)band structures

e How do we measure “band structures”?

Photoemission Inverse Photoemission

v -
o </

Occupied (valence) states Unoccupied (conduction) states

N to N-1 particles N to N+1 particles
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What is the (qusiparticle) band gap?

e Quasiparticle energy of occupied state s: & =E,(N)—E,(N -1)

* Quasiparticle energy of unoccupied states: ¢, =E_(N +1)—E,(N)

E,(N):Ground state energy of the N -electron system

e (minimum) Quasiparticle band gap
Eg =[Eo(N +1) — E;(N)]-[E;(N) —E; (N —1)]
=E,(N+1)+E,(N-1)—2E,(N)

 The quasiparticle gap is actually related to the total energies of
three different systems with N, N-1, and N+1 particles!

e C(Clearly, one cannot use the Kohn-Sham DFT eigen values to
calculate the quasiparticle band gap (or more general, the

quasiparticle band structure) 13



Quasiparticle gap of a hydrogen atom

E, =[E,(N+1) —E,(N)]-[E,(N)—E;(N -1)]
=E,(N+1)+E,(N—-1)—2E,(N)
=[E,(N +1) —E,(N)]-[E,(N)—E,(N —1)]
=IP-EA

- For a hydrogen atom:

0.0

E, =IP-EA l, —0.8eV

=13.6-0.8

=12.8eV
-13.6eV

14
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Green function

* Green function (GF) contains spectral information on single-
particle excitations changing the number of particles by one:

g, (Mg, () Z f ()1 ()
o — (EN+1 E))+id a)(Ekl\'_l—EoN)—i5

G(F,F',a)):z

With quasiparticle amplitudes:

Photoemission

Inverse Photoemission

g, (F) =< W' [y (F) |0, >
fo (1) =< [y (0)] ¥y >




Green function

 The poles of the GF give the corresponding excitation energies.

* The spectral function

A, @) =— S IMG(F. T, o)
VA

=> 0. (A (F)S(w—E} +Ey )+ f.(F) . (F)S(w—Ey +EN )
k

gives the quasiparticle density of states (DOS)

* For non-interacting systems (like KS systems), the spectral
function is just the DOS calculated from the KS eigen states.

A(a)):—%lmGo(w)



Dyson equation and self-energy

 The Dyson equation: Relation between the bare and dressed
propagators and the self-energy

# = —)—+—)—‘Z%=
G G, G, G

G =G, +G,5G

* @G, is just the propagator of the non-interacting particle
(0—H)G,(F, 1, 0) =6(F -T’)
 And G is call full propagator

(0—H)G(r,r',ow)=0(r —T1")
(w-H,-2)G(r,r',w)=0(r—r")



Quasiparticle equation

e Another form of Dyson equation: Quasiparticle equation
(1) + [ (0,7 ES )w S (F)dr = ES y i (7)
H° =T +V" +V® : Oneelectron Hamiltonian
e The self-energy contains all effects of e-e interactions
e Compare with the Kohn-Sham equation

[H +V, (Nlyy (F) = Ex’wa (7)

e One of the difficulties of quasiparticle calculations is that the self-
energy is nonlocal, non-Hermitian, and energy dependent.

e Approximation to the self-energy:
- The Hartree-Fock approximation: =™ (f,F') =V *(F, ")
- The LDA approximation: ="°A(F,r') =V *(r)o(F,T")



The Hedin equations for the self-energy

e Hedin's equations for the self-energy ‘JJ\/\/\/\_\

Self-energy  5(12)=i{W(1'3)G(4(423)d(34) 2 sz 1
Screened '

coul. W (12) = :v(13)g‘1(32)d(3) , O .

Polarizability P(12) = —ijG(23)G(42)F(34'1)d (34) P(12)

v
ffr::,);n (12:3) = 5(12)5(13) + | ‘52(125))G(46)G(75)r(67;3)d(4567)

- Has to be solve iteratively (self-consistently)
- Extremely difficult!

Hedin, Phys. Rev. 139 A796 (1965)



The GW approximation

e The GW approximation:
>(12) =i j W (1*3)G (14)I(42:3)d (34)

(12;3) = 5(12)5(13) + | g 67:3)d (4567)

T(12:3) = 5(12)5(13) =) 3(12) =iW (12)G(12)

Ty e

$(12)
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The G°W? approximation

e Still, G is the fully-interacting one-body Green function; one
still has to solve the following equations self-consistently (and
it turns out to be a bad idea to do so):

HO(Myw (1) + [ 2(r,r ES ) (r)dr'= ES w3 (r)

e The GO°W?O approximation
3 =iGW_2,

0
<WR(’)PA:‘9I;%’AV
F/JV\/\’L\ > F/JV\/\’L\ Empn =[1-VP°]"

2 G 1 5 Qo 1 v :bare Coulomb potential
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First-principles GW method

Dielectric
function

KS mean-field
calculation

One patrticle

Green function G ‘

Hybertsen and Louie, 1986 24



First-principles GW method

e Formally, the electron self-energy within the GW approximation
can be written as

S(F,F', ) = —jda)e'é‘we(* P o—o )W (T o) (5=0)

(Mo ('
G(F,F',w):z¢”k()¢”k_( ) 6, =0%ife, <ud, =0 if e > u)
nk a)_gnlz_lé‘nlz

e The screened Coulomb interaction in momentum space:

W(r,r', o)
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v(qd) = 4—75 IS the Fourier transform of the Coulomb potential
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First-principles GW method

e Acritical step in first-principles GW method is the calculation of the
dielectric matrix, therefore the screened Coulomb interaction W

Wes. (0, @) = £5.(0, @)V(G +G')

* In the exercise, we will not calculate the full frequency-dependent
dielectric matrix (or screened Coulomb interaction).

* Instead, we will use the so-called Hybertsen-Louie generalized
plasmon pole (HL-GPP) model to extend the calculated static
dielectric matrix to finite frequencies

e More details can be found in

PRB 34, 5390 (1986)
Compt. Phys. Commun. 183, 1269 (2012)



First-principles GW method

e The static dielectric function is related to the (irreducible) electron
polarizability

.- N
(q) o ZMnn k G) nn' (k’qu') e =
n.n'k gn'ﬁ+q_gnlz
4 | |
via 25 () =dgs ~ e Ko (@

—

where M _.(K,d,G) =<n,k [e @7 |n' k+§ >

and €, ,and f_ . are the KS eigenvalue and the Fermi occupation
function of state| n, K>



First-principles GW method

 We have now all ingredients to calculate the electron self-energy
 The quasiparticle energy of a given state:

E® =&+ <nk|Z _(F, 7", EL)[nk >—<nk [V, |nk >

e Still, the self-energy has to be calculated at the quasiparticle
energy, which we do not know until we calculate the self-energy!

¢ If the self-energy X (o) =< nk |12 (F, T, w)| nk > is a slow-
varying function of oo we can carry out a first-order expansion:

EX =E® +2Z, -(E% —&/

where E0~—5KS+<nk|Z (r,r' gKS)lnk> <nk|V Ink >

and
~dz (E)/dE
kT dZ “(E)/dE is called quasiparticle renormalization factor




The BerkeleyGW package (https://berkeleygw.org/)

Mean-Field
MF MF 7
?nka nkla X c, 9. :0 i

WFN vxc.dat RHO

v 3

kco kﬁ

epsilon sigma

—1 Iy
5(;,(;/((17 E) 2 Egk
ESSa—— N~~~
epsOmat,epsmat egp.dat

Computer Physics Communications 183, 1269 (2012) 29
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Success of the GW method

—

QP _ _KS >
Ex =¢ +<nk|Z-V|nk>

ZGW =1GW ZGW _ /-\Ma\

G :electron Green function G
W :screened Coulomb interaction

LDA (eV) GWAI (eV) Exp (eV)

diamond 3.9 5.6 5.48
Silicon 0.52 1.29 1.17

Germanium ~0 0.75 0.74
LiC 6.0 9.1 9.4

Typical accuracy of ab initio G®W? methods: ~ 0.1 - 0.2 eV

Hedin, 1965; Hybertsen and Louie, 1986

31



Not all materials are “GW friendly”

e The band gap of InN was found to be 0.7 ~ 0.8 eV in 2002!
By experimentalists!!! Previously “accepted” value was 1.9 eV
- What have theorists been doing???

ZnO: LDA band gap: 0.7 eV
- Earlier GW calculations by several groups: 1.5~ 2.5 eV
- Experimental gap: ~ 3.6 eV

CuCl: LDA band gap: 0.32 eV
- “Straightforward” GW calculations give Eg < 2.0 eV
- Experiment: 3.4 eV

GWA does not work for these materials?

The devil is in the detail: Convergence behavior of several
truncation parameters has to be carefully examined!



The dielectric function

* The dielectric function: ¢ :1_\/;(0
1 Tk /
X@q u}) a 5[00(1{. q G)]\[w‘(k q G )X

1 1
— +
(EfukJrq —Ex —w+1i0  Likiq — Bk +w+ 20)

 Two truncation parameters in practical calculations

- Number of conduction bands (Nc) included in the summation
- Kinetic energy cutoff (G_,) for the dielectric matrix &gg:(q, ®)

* |n practical calculations, truncations are almost always applied

- Nc number of conduction bands needed to converge the GW
results scales with the system volume

- Nc and anc G, are both highly materials dependent



The Coulomb-hole self-energy

e The self-energy is usually decomposed into two terms
(r,rBE)=2,(r,r;E)+ 2. (r,r';E)
where Zs .Screened exchange; X, :Coulomb hole

1 states e QZ~~(@) -
<Z, >ngz@z [M2" (K, )T ML (K, 9 c6 M(G+G')
m ,G,G'

(5@@- (G)[E - Enk-d 0-3@@ (9)]

Mz (k, q) = (mk — qle @G k)

- The summation in principle should include all conduction bands

34



Convergence issues in GW calculations

 Two important cutoff parameters:
- Band summation

e (0)

- Kinetic energy cutoff of the dielectric matrix )
Ecut :| cht | /2

* The convergence issue in GW calculations is well recognized but
often “ignored” (sometimes intentionally)

- Hard to perform convergence tests for all GW calculations

- For some materials (e.g., Si, Ge), GW results may converges
quickly

- For others (e.g. ZnO, MgO, CuCl), unconverged results may
lead to false predictions and/or wrong interpretations



Quasiparticle Gap of ZnO (LDA+U/GW)]

_ , 80 R i
3.6 P —— 20 n, experiment
R 40 Ry
34|
_____ —-i1 20 Ry
> %21 \ Ese (D)
a _ 2
8 3 Ecut _l Gmax | /2
by e e i e A e i s - SR - 10 Ry
g
(8] ;
28F . |
; Wee (0, @) = &66.(0, @)V(q +G')
24-f ]
Previous result A small kinetic energy

cutoff for the dielectric
matrix leads to a false
convergence behavior

PRL 105, 146401 (2010) 36
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0 500 1000 1500 2000
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Quasiparticle gap of MgO

Number of conduction bands in COH summation Dielectric
50 100 200 300 500 750 1000 1400 matrix cutoff
- . . 50 R
7.9 | ‘_ - 1 29 R¥
= 30 Ry
7.8} )
3t 20 Ry
7.7}
< 15 Ry
2 7.6
i
75}
74 ; : ; ; : " 10 Ry
7.3 ’/ .
} Previous results
7.2

10 20 30 40 50 60 70
Energy of the highest band in COH summation (Ry)

Scientific Reports 6, 36849 (2016).



Quasiparticle gap of CuCl

_____ I
3.6 . , |
150 Ry
3.4 I CUCELDA+U/GW = - experiment
3.2 ' 100 Ry
3T 50 Ry -
E 2.8 _
2 26 i
24 HPFTTT T T " | .
Dielectric matrx cutoff: 10 Ry
oy A few
hundred 10,000 bands for a
: bands two-atom system!?
1.8 ' ' | —

0 2000 4000 6000 HOO

Number of conduction bands included
PRB 98, 045108 (2018) 38



Systems with d-states

* GW calculations for systems involving localized d states and oxides
are particular challenging due to the computational costs (high
cutoffs and large number of bands), the slow convergence, and
the poor DFT description of the correlated d electrons

* Fortunately, with our newly developed accelerated methods
(more later) and the development of combined DFT+U and GW,
we are now able to accurate predict the quasiparticle properties
of oxides (ZnO discussed earlier, SrTiO3, BaTiO3, SrZrO3, etc)



Systems with d-states

PHYSICAL REVIEW B 103, 035128 (2021)

Quasiparticle band structure of SrTiO; and BaTiO3: A combined LDA + U and G°W° approach

Gabriel Lopez-Candales,' Zhao Tang,! Weiyi Xia,' Fanhao Jia,"-? and Peihong Zhang®'-"

PHYSICAL REVIEW B 104, 195129 (2021)

Quasiparticle band structures of the 4d perovskite oxides SrZrO; and BaZrO;

Gabriel Lopez-Candales,'"” Zhao Tang ®,"" Greis J. Cruz,' Weiyi Xia®,"? Fanhao Jia,'’ and Peihong Zhang ®'-"



Quasiparticle band structures of STO and BTO
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Systems with d-states

TABLE I. Direct and indirect band gaps for StTiO5 and BaTiO;
calculated at different levels (LDA, LDA 4+ U, GW /LDA, and
GW /LDA + U), where all values are given in electronvolts.

dir ind
Eg Eg

U=0 U=4 Exp U=0 U=4 Exp
DFT GW DFT GW DFT GW DFT GW

STO 2.15 4.15 2.62 [3.83 3.75| 1.79 3.75 2.21 |3.38 3.25
BTO 2.14 4.02 254 |3.69 3.60| 1.75 3.62 2.14 |3.23 3.15




Hybrid organic-inorganic perovskites

PHYSICAL REVIEW B 93, 085202 (2016)

Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit
coupling, and self-energy effects

Weiwei Gao,! Xiang Gao,? Tesfaye A. Abtew,! Yi-Yang Sun,’ Shengbai Zhang,® and Peihong Zhang'>""

* One of the difficulties of calculating the quasiparticle properties
of hybrid perovskites is random orientations if the organic
molecule and the structure distortions — need large unit cells and
average over many distorted structures




Quasiparticle band gap of MAPbI3

Phase Structure ESWJF SOC
Pbly ideal struct. 0.93
Cubic MA [001 1.43
(primitive) | MAPBIz | MA (011 1.40
MA [111] 1.31
Tetragonal MAPBL MA i{:}p:l: lE‘
(primitive) Arbis o MAOL L.73
MA [111 1.72

C&T | iapi with MA 1.654
(supercell) AAEDI ) din ections 0.08
randc d

Experiment | MAPDIs (1 .-51m1.66j{efﬁ~'..1T 22126,04556

PRB 93, 085202 (2016)



GW calculations for large systems?
High-throughput GW calculations?

* (Forget about ZnO or CuCl) For a 2-atom MgO, we need about
1,000 conduction bands to converge the result

* Suppose we are interest in a system containing 200 atoms
(e.g, a supercell containing a defect), we will need

1000x (200/2) =100,000 conduction bands

to achieve the same level of convergence

* Not only calculating the wave functions is hard (if possible),
but storing these wave functions is extremely problematic, not
to mention the subsequent GW calculations
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