
Quasiparticle and electron-hole excitations in 

solids: theory and computation 

(Part 2)

Peihong Zhang

Department of Physic, University at Buffalo

1



• Quasiparticle concept, quasiparticle band structure and band gap

• Quasiparticle equation, self-energy, and the GW approximation

• First-principles GW method

• Success and challenges of the GW method

• Acceleration techniques: Energy-integration

• GW calculations of 2D materials

• Electron-hole excitations and the Bethe-Salpeter equation

Outline

2



• (Forget about ZnO or CuCl) For a 2-atom MgO, we need about 
1,000 conduction bands to converge the result

• Suppose we are interest in a system containing 200 atoms 
(e.g, a supercell containing a defect), we will need 

to achieve the same level of convergence

• Not only calculating the wave functions is hard (if possible), 
but storing these wave functions is extremely problematic, not 
to mention the subsequent GW calculations

GW calculations for large systems?
High-throughput GW calculations?

bands conduction  000,100)2/200(1000 =
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Speed up GW calculations for large systems?

DOS of MgO

Do we really need 
an explicit band-by-
band summation?

Explicit band-by-
band summation

Scientific Reports 6, 36849 (2016). 4



Speed up GW calculation for large systems

• Contributions from high energy states are calculated by an 
energy integration:  

:  free-electron-like DOS))0((2)(
2 xcVEEg −


=


Low-energy states

High-energy states

Scientific Reports 6, 36849 (2016). 5



Accuracy/performance of the new method

QP band structure of MgO QP band gap of ZnO
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Scientific Reports 6, 36849 (2016). 6



Large scale GW calculations

• A speed-up factor of nearly two orders of magnitude is achieved
• Numerical error: less than ±0.05 eV

• Band gap of MgO supercells

Scientific Reports 6, 36849 (2016). 7
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• Reported GW band gap of MoS2:

2.41 ~ 2.84 eV 

(without including spin-orbit interactions)

• Methods: G0W0, G1W0, self-consistent GW, etc

• Parameters used:

- Number of conduction bands (3-atom unit cell): 96 to 10,000

- k-point sampling: 6x6x1 to 24x24x1

- Who do you trust?

What about 2D materials?

MoS2

PRB 85, 205302 (2012); PRB 86, 115409 (2012);
PRB 87, 155304 (2013); PRB 88, 045412 (2013); 
PRL 115, 119901 (2013)
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GW calculations for 2D materials: Challenges

• Need to avoid fictitious interlayer interaction

- Long-range Coulomb interaction means slow convergence with 

respect to the interlayer distance; a large vacuum layer is needed 

even if truncated Coulomb interaction is used

- A large number of conduction bands (Nc) is needed

• Asymptotic behavior of the 

dielectric function at small q

• An extremely dense k-grid is 

needed for 2D GW calculations
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2D materials
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MoS2

GW band gap of MoS2 as a function of 
number of bands included in the calculation New method

(Energy 
integration)

Old method
(band-by-band 
summation)
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2D dielectric screening

Ineffective long wave 
length screening



2D materials

Fully converged GW 
calculations for 2D 
materials with a speed-up 
factor of about 20 ~ 30 The GW band 

gap converges 
extremely 
slowly! Why?
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• For simple 2D materials such as MoS2 and MoSe2, we need  
~10,000 bands and at least a 24x24x1 k-grid to properly converge 
the quasiparticle properties using conventional GW methods

• Scaling of the computational cost of GW calculations with respect 
to number of k points:

- Compared with a calculation using a 6x6x1 k-grid, a calculation 
using a 24x24x1 k-grid is

• Also, the number of bands will scale linearly with the system size, 
and the computation cost scales as 

• It is nearly impossible to carry out fully converged GW calculations 
for complex 2D materials using current methods

GW calculations for 2D materials: Challenges
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GW calculations for 2D materials: Challenges

• In the conventional GW approach, the integration of the self-
energy within the Brillouin zone (BZ) is carried out by a summation 
on a uniform k-grid:
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• This approach is highly inefficient 
for 2D materials because of the 
sharp change in the dielectric

function near q = 0.



16

Mini-BZ sub-sampling fitting 
and analytical integration

• Our approach: Sub-sampling the mini-BZ Cq near q = 0

•The BZ summation of the electron self-energy is separated into 
two parts: conventional summation of all k points other the G
point, and an analytical integration in the mini-BZ

ۦ ۧ𝑛𝑘 Σ(𝜔) 𝑛𝑘 ≈
1

𝑨
න
𝑚𝐵𝑍

𝚺 𝒒,𝜔 𝑑𝐴 + ෍

𝒒≠𝟎

𝚺 𝒒, 𝜔

2D Materials 6, 015018 (2019). Nanoscale, 11, 3993 (2019). 
NPJ Comput. Mater. 6, 118 (2020).
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Performance of the new method

GW band gap of single-layer Hf2CO2 MXene

as a function of k-point sampling density.
Nanoscale, 11, 3993 (2019). 

Our new methods result in a combined speed-up factor of 
~ 1,000 times for GW calculations of complex 2D materials.
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• Optical absorption spectrum of solids is typically described by the 
imaginary part of the (frequency-dependent) macroscopic 
dielectric function, i.e.,           .

• Various other optical properties can be calculated using both the 
real and the imaginary parts of the dielectric function. For 
example, the absorption coefficient a:

• On a single particle level, one have

where     is the polarization vector of light, and    is the velocity 
operator, and                             are the valence and conduction states

Optical absorption
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• How well does theory work?

Optical absorption: single particle calculation
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• What goes wrong?

• If calculated using DFT 
results, the KS band gap 
could be way off. This can be 
resolved by including the GW 
self-energy correction.

• Still NOT right!

Optical absorption: single particle calculation
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• What is still missing?

• The excited electron and the hole it leaves behind have interaction!

Optical absorption: single particle calculation
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Electron-hole excitations

• The GW theory can describe 
ONE-particle excitations well

• However, optical excitations 
actually involve TWO 
particles: an electron and a 
hole

• Interaction between the 
electron and hole must be 
included in the calculation



What about TDDFT?

• TDDFT seems to work better 
for localized/isolated systems 
with highly non-uniform 
charge densities, e.g., atoms
and molecules

• Unless specialized functionals
and kernels are used, TDDFT 
does not give accurate optical 
absorption spectra for solids



• The propagation of an electron-hole pair is described by the 
two-particle correlation function L

• Non-interacting pair correlation function:

(indices 1,2,3,4 stand for space, time, and spin variables)

• With interaction, 

Electron-hole excitations and the 
pair correlation function
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• The pair correlation function can be written explicitly if we know 
the (interacting or non-interacting) pair states:

where            are the non-interacting conduction and valence 

states and                 are the interacting pair states with excitation

energy      .

Explicit expression for the 
pair correlation function
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• In this case, it is also known as the Bethe-Salpeter equation (BSE)

where K is called the electron-hole kernel

Bethe-Salpeter equation for the 
pair correlation function
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• Formally, the interacting pair 
correlation function and the 
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• The main idea of using many-body perturbation theory to solve 
the BSE is that one can start with mean-field KS solutions to 
obtain quasiparticle properties within the GW approximation. 
The electron-hole interaction is then

• In the BSE, the excitations and de-excitations are coupled, making 
the calculations rather difficult.

• Often one use the so-called Tamm-Dancoff approximation (TDA)
to decouple the excitation and de-excitations, leading to a much 
simplified BSE

Solving the Bethe-Salpeter equation



• Using the TDA, the BSE can be casted into a simplified eigenvalue 
problem:

where        is the e-h excitation energy and the eigen vector

can be used to constructor the e-h pair (excitonic) states:

• At this point, we need to examine more carefully the spin aspect 
of the e-h pair. For a given e-h pair, we have the following spin 
states: 

which give rise to spin singlet and triplet solutions.

The TDA and the Bethe-Salpeter equation
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• The electron-hole Hamiltonian matrix looks like this

• Within the singlet subspace,                                         , the 
Hamiltonian is simplified

• Within the triplet space, 

The TDA and the Bethe-Salpeter equation
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• The imaginary part of the dielectric function is then

• Or

The TDA and the Bethe-Salpeter equation
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Modern approach to electronic excitations in solids

+

-
hv

DFT (mean-field)

GW (self-energy)

BSE (e-h coupling)

Electron-hole excitations
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The BerkeleyGW package (https://berkeleygw.org/)

Computer Physics Communications 183, 1269 (2012) 34
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