Excited States with Multi-Reference Self-Consistent Field Methods

Sebastian Mai

Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria

July 7th, 2022

"Excited States and Nonadiabatic Dynamics CyberTraining Workshop 2022" in Buffalo, NY

Motivation: Photochemistry

SM, L. González: Angew. Chem. 59, 16832, (2019).

Motivation: Photochemistry

- Many things can happen in photochemistry, so electronic structure must be very flexible!
- If ground state is wrong, then excited states will also be wrong.

SM, L. González: Angew. Chem. 59, 16832, (2019).

Conventional (single-reference) electronic structure fails when the $S_0 - S_1$ gap becomes small.

Conventional (single-reference) electronic structure fails when the $S_0 - S_1$ gap becomes small.

1. Dissociation

In homolytic dissociation, several states become degenerate.

Conventional (single-reference) electronic structure fails when the $S_0 - S_1$ gap becomes small.

1. Dissociation

In homolytic dissociation, several states become degenerate.

2. Conical intersections

Such state degeneracies are ubiquitous in photochemistry as relaxation funnels.

Conventional (single-reference) electronic structure fails when the $S_0 - S_1$ gap becomes small.

1. Dissociation

In homolytic dissociation, several states become degenerate.

2. Conical intersections

Such state degeneracies are ubiquitous in photochemistry as relaxation funnels.

3. Transition states

Usually, reactant and product have different electronic configurations which are degenerate at the transition state.

Conventional (single-reference) electronic structure fails when the $S_0 - S_1$ gap becomes small.

1. Dissociation

In homolytic dissociation, several states become degenerate.

2. Conical intersections

Such state degeneracies are ubiquitous in photochemistry as relaxation funnels.

3. Transition states

Usually, reactant and product have different electronic configurations which are degenerate at the transition state.

4. Metal complexes

Open shells lead to many near-degenerate electronic configurations.

Example: Dissociation

H --- H H - H $\frac{1}{1_{s_{4}}} + \frac{1}{1_{s_{5}}} = \frac{1}{1_{z_{1}}} \left(\frac{1}{t_{1}} - \frac{1}{t_{1}} - \frac{1}{t_{1}} + \frac$

Example: Dissociation

- In molecular H₂, the wave function is well described by the σ^2 configuration
- In dissociated H⁺+H⁺, the wave function is $1s_A^1 1s_B^1$, which equivalent to a linear combination of σ^2 and $(\sigma^*)^2$

Example: Dissociation

- In molecular H₂, the wave function is well described by the σ^2 configuration
- In dissociated H'+H', the wave function is $1s_A^1 1s_B^1$, which equivalent to a linear combination of σ^2 and $(\sigma^*)^2$
- \Rightarrow Describing the entire PES consistently requires two configurations.

Example: Conical intersections

Example: Conical intersections

Depending on where on the lower cone one is, the wave function is either closed shell, open shell, or a linear combination

Example: Conical intersections

- Depending on where on the lower cone one is, the wave function is either closed shell, open shell, or a linear combination
- \Rightarrow With only one configuration for the lower state, the cone cannot be formed.

Example: Transition states

64 00-1-00 O ØC) π_{-} œ 00 04 00 Ø П OØ Ø Cyclobutane 2 Ethylencs ||--- ||

Example: Transition states

Π_ -00 00 * Ca. 80 Cyclobuta 2 Ethylencs ||--- ||

⇒ At the transition state, the wave function is a linear combination of reactant and product configurations.

Example: Metal complexes

Example: Metal complexes

- Octahedral low-spin d^6 metal complexes are usually fine
- Other configurations are prone to be open-shell, like octahedral d^4

Example: Metal complexes

- Octahedral low-spin d⁶ metal complexes are usually fine
- Other configurations are prone to be open-shell, like octahedral d^4
- \Rightarrow Needs to be tested, many metal complexes are open-shell and then require multiple configurations.

In single-reference methods the **ground state is assumed to be one electronic configuration** (e.g., one Slater determinant).

In single-reference methods the **ground state is assumed to be one electronic configuration** (e.g., one Slater determinant).

Problems:

- Orbital optimization does not converge
- Orbitals are qualitatively wrong

In single-reference methods the **ground state is assumed to be one electronic configuration** (e.g., one Slater determinant).

Problems:

- Orbital optimization does not converge
- Orbitals are qualitatively wrong

Solution

Use multi-reference methods, where the ground state uses multiple configurations in every step.

In single-reference methods the **ground state is assumed to be one electronic configuration** (e.g., one Slater determinant).

Problems:

- Orbital optimization does not converge
- Orbitals are qualitatively wrong

Solution

Use multi-reference methods, where the ground state uses multiple configurations in every step.

This means:

Optimize orbitals and CI expansion simultaneously: Multi-configurational SCF (MCSCF)

In single-reference methods the **ground state is assumed to be one electronic configuration** (e.g., one Slater determinant).

Problems:

- Orbital optimization does not converge
- Orbitals are qualitatively wrong

Solution

Use multi-reference methods, where the ground state uses multiple configurations in every step.

This means:

- Optimize orbitals and CI expansion simultaneously: Multi-configurational SCF (MCSCF)
- To simplify choice of CI expansion: Complete active space SCF (CASSCF) (choose important orbitals instead of important configurations)

The CASSCF method

Orbital spaces:

- Virtual: Empty in all configurations
- Active: Full CI within these orbitals
- Occupied: Full in all configurations

The CASSCF method

Orbital spaces:

- Virtual: Empty in all configurations
- Active: Full CI within these orbitals
- Occupied: Full in all configurations

Notation:

► CASSCF(*N*_{el},*N*_{orb})

The CASSCF method

Orbital spaces:

- Virtual: Empty in all configurations
- Active: Full CI within these orbitals
- Occupied: Full in all configurations

Notation:

► CASSCF(N_{el},N_{orb})

Algorithm

- Simultaneous optimization of MO and CI coefficients
- MO and CI coefficients not independent
- Many local minima on $E(C_{MO}, C_{CI})$ surface
- Requires good guess and good converger algorithms
- Often manual help needed (swapping orbitals)

The CASSCF method: State-averaging

CASSCF is based on variationally optimizing MO and CI coefficients to give lowest energy.

- Well defined if only one state required
- For excited-state calculations, needs state-averaging:
 - CI coefficients are optimized for each state (multiple eigenvalues of the same CI matrix)
 - ▶ MO coefficients are optimized for the average energy of N_{root} states

The CASSCF method: State-averaging

CASSCF is based on variationally optimizing MO and CI coefficients to give lowest energy.

- Well defined if only one state required
- For excited-state calculations, needs state-averaging:
 - CI coefficients are optimized for each state (multiple eigenvalues of the same CI matrix)
 - ▶ MO coefficients are optimized for the average energy of N_{root} states

In SA-CASSCF, changing the number of roots changes **all** energies!

The CASSCF method: State-averaging

CASSCF is based on variationally optimizing MO and CI coefficients to give lowest energy.

- Well defined if only one state required
- For excited-state calculations, needs state-averaging:
 - Cl coefficients are optimized for each state (multiple eigenvalues of the same Cl matrix)
 - ▶ MO coefficients are optimized for the average energy of N_{root} states

In SA-CASSCF, changing the number of roots changes **all** energies!

In SA-CASSCF, PESs can be discontinuous if states change character!

CASSCF includes a "small" Full CI and inherits the scaling of Full CI.

CASSCF includes a "small" Full CI and inherits the scaling of Full CI.

Number of Slater determinants:

$$N_{\rm dets} = \frac{2S+1}{N_{\rm orb}+1} \begin{pmatrix} N_{\rm orb}+1\\ N_{\rm el}/2 - S \end{pmatrix} \begin{pmatrix} N_{\rm orb}+1\\ N_{\rm el}/2 - S + 1 \end{pmatrix}$$
(1)

CASSCF includes a "small" Full CI and inherits the scaling of Full CI.

Number of Slater determinants:

$$N_{\text{dets}} = \frac{2S+1}{N_{\text{orb}}+1} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S \end{pmatrix} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S+1 \end{pmatrix}$$
(1)

For singlet states:

S = 0		$N_{\rm orb}$				
		4	8	12	16	20
N _{el}	4	20	336	1,716	5,440	13,300
	8	1	1,764	70,785	866,320	5,799,465
	12		336	226,512	14,158,144	300,467,520
	16		1	70,785	34,763,300	2,848,181,700
	20			1,716	14,158,144	5,924,217,936

CASSCF includes a "small" Full CI and inherits the scaling of Full CI.

Number of Slater determinants:

$$N_{\text{dets}} = \frac{2S+1}{N_{\text{orb}}+1} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S \end{pmatrix} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S+1 \end{pmatrix}$$
(1)

For singlet states:

S = 0		$N_{\rm orb}$				
		4	8	12	16	20
$N_{\rm el}$	4	20	336	1,716	5,440	13,300
	8	1	1,764	70,785	866,320	5,799,465
	12		336	226,512	14,158,144	300,467,520
	16		1	70,785	34,763,300	2,848,181,700
	20			1,716	14,158,144	5,924,217,936

CASSCF scales exponentially with the number of active orbitals!

CASSCF includes a "small" Full CI and inherits the scaling of Full CI.

Number of Slater determinants:

$$N_{\text{dets}} = \frac{2S+1}{N_{\text{orb}}+1} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S \end{pmatrix} \begin{pmatrix} N_{\text{orb}}+1\\ N_{\text{el}}/2-S+1 \end{pmatrix}$$
(1)

For singlet states:

S = 0		$N_{\rm orb}$				
		4	8	12	16	20
$N_{\rm el}$	4	20	336	1,716	5,440	13,300
	8	1	1,764	70,785	866,320	5,799,465
	12		336	226,512	14,158,144	300,467,520
	16		1	70,785	34,763,300	2,848,181,700
	20			1,716	14,158,144	5,924,217,936

CASSCF scales exponentially with the number of active orbitals! $N_{\rm act} \lesssim 16$

- Very important choice!
- Depends strongly on chemical problem at hand.

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

 Include orbitals for your problem (excitations, reaction, ...)

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π* for every π, etc)

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π* for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π* for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

 Choose orbitals according to energy, close to the HOMO-LUMO gap

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π* for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

- Choose orbitals according to energy, close to the HOMO-LUMO gap
- Choose orbitals according to natural occupation numbers (e.g., do an MP2 run first, choose orbitals with occupation of 0.05-1.95)

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π* for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

- Choose orbitals according to energy, close to the HOMO-LUMO gap
- Choose orbitals according to natural occupation numbers (e.g., do an MP2 run first, choose orbitals with occupation of 0.05-1.95)
- For transition metals: sometimes a second d shell is necessary

- Very important choice!
- Depends strongly on chemical problem at hand.
- > The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π^{*} for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

- Choose orbitals according to energy, close to the HOMO-LUMO gap
- Choose orbitals according to natural occupation numbers (e.g., do an MP2 run first, choose orbitals with occupation of 0.05-1.95)
- For transition metals: sometimes a second d shell is necessary

It is very easy to reach the limit of 16 active orbitals!

- Very important choice!
- Depends strongly on chemical problem at hand.
- ▶ The orbitals you want might not be the ones giving the lowest energy at a particular geometry.
- > You need to understand the electronic structure of the molecule!
- Finding the active space involves trial and error as well as chemical intuition.

Some general rules:

- Include orbitals for your problem (excitations, reaction, ...)
- Always include bonding-antibonding pairs (e.g., one π^{*} for every π, etc)
- Include sets full sets of equivalent orbitals (full *d* shells, equivalent σ_{C-H} orbitals, etc)

- Choose orbitals according to energy, close to the HOMO-LUMO gap
- Choose orbitals according to natural occupation numbers (e.g., do an MP2 run first, choose orbitals with occupation of 0.05-1.95)
- For transition metals: sometimes a second d shell is necessary

It is very easy to reach the limit of 16 active orbitals! C

Often requires compromises!

Choice of the active space orbitals: Example

ortho-nitrobenzaldehyde

Choice of the active space orbitals: Example

ortho-nitrobenzaldehyde

What would be a good active space for the excited states?

Choice of the active space orbitals: Example

ortho-nitrobenzaldehyde

What would be a good active space for the excited states?

- Phenyl ring: 6 π/π^*
- Carbonyl group: π , π^* , n
- Nitro group: $3 \pi/\pi^*$, 2 n

Phenyl ring:

Nitro π system:

Carbonyl π system:

Two strategies:

Two strategies:

Modern CI solvers

Currently in active development: Do CI step with more efficient algorithms

Two strategies:

Modern CI solvers

- Currently in active development: Do CI step with more efficient algorithms
- DMRG: density matrix renormalization group (product of many matrices/tensors represent coefficients instead of huge vectors)

Two strategies:

Modern CI solvers

- Currently in active development: Do CI step with more efficient algorithms
- DMRG: density matrix renormalization group (product of many matrices/tensors represent coefficients instead of huge vectors)
- FCIQMC: Full CI quantum Monte Carlo (stochastically sample Full CI space using small number of "walkers")

Two strategies:

Modern CI solvers

- Currently in active development: Do CI step with more efficient algorithms
- DMRG: density matrix renormalization group (product of many matrices/tensors represent coefficients instead of huge vectors)
- FCIQMC: Full CI quantum Monte Carlo (stochastically sample Full CI space using small number of "walkers")
- ▶ Both allow going beyond CAS(40,40), but hard to "use" resulting wave functions

Two strategies:

Modern CI solvers

- Currently in active development: Do CI step with more efficient algorithms
- DMRG: density matrix renormalization group (product of many matrices/tensors represent coefficients instead of huge vectors)
- FCIQMC: Full CI quantum Monte Carlo (stochastically sample Full CI space using small number of "walkers")
- Both allow going beyond CAS(40,40), but hard to "use" resulting wave functions

Other partition schemes than CASSCF

- RASSCF: restricted active space SCF: active space split into 3 subspaces
- GASSCF: generalied active space SCF: active space split into any number of subspaces
- Both are very difficult to choose and converge

Methods to go to larger active spaces: CASSCF, RASSCF, GASSCF

Malmqvist, Rendall, Roos: *JPC* 94, 5477 (1990). Ma, Li Manni, Gagliardi: *JCP* 135, 044128 (2011).

Pros and Cons of MCSCF and related methods

Advantages:

- + Variational
- ~ Size consistent/extensive if the active space grows with the system
- + Free of spin contamination, can describe any spin state
- + Full wave function information, thus, easy to compute properties (gradients, nonadiabatic couplings, dipole moments, ...)
- + Includes much of static correlation, thus, qualitatively correct everywhere and gives adequate properties

Pros and Cons of MCSCF and related methods

Advantages:

- + Variational
- $\sim\,$ Size consistent/extensive if the active space grows with the system
- + Free of spin contamination, can describe any spin state
- + Full wave function information, thus, easy to compute properties (gradients, nonadiabatic couplings, dipole moments, ...)
- + Includes much of static correlation, thus, qualitatively correct everywhere and gives adequate properties

Disadvantages:

Includes almost no dynamic correlation,

thus, energies are not very good, accurate results require "post-MCSCF" treatment

Post-MCSCF methods

Post-MCSCF methods

Multi-reference CISD

 Variational single+double excitations from occupied+active to active+virtual

Pros/cons:

- + Variational
- + Gradients, nonadiabatic couplings
- Not size-consistent
- Very expensive, limited accuracy for larger molecules

Variants:

- Uncontracted (COLUMBUS)
- Contracted (MOLPRO)

Post-MCSCF methods

Multi-reference CISD

 Variational single+double excitations from occupied+active to active+virtual

Pros/cons:

- + Variational
- + Gradients, nonadiabatic couplings
- Not size-consistent
- Very expensive, limited accuracy for larger molecules

Variants:

- Uncontracted (COLUMBUS)
- Contracted (MOLPRO)

Multi-reference perturbation theory

 Perturbative single+double excitations from occupied+active to active+virtual

Pros/cons:

- Not variational
- Gradients, nonadiabatic couplings very challenging/expensive
- + Size-consistent
- + Reasonable cost-accuracy balance

Variants:

- Hamiltonian: CASMP2, MRMP2, CASPT2, NEVPT2, QDPT2, ...
- Multiple states: SS/MS/XMS-CASPT2, QD-NEVPT2, ...

Motivation to use multi-configurational methods

Photochemistry involves untypical electronic structure situations that HF/DFT can't deal with

Motivation to use multi-configurational methods

Photochemistry involves untypical electronic structure situations that HF/DFT can't deal with

CASSCF

- Optimize MO and CI coefficients simultaneously
- Choose active space to define which configurations to include

Motivation to use multi-configurational methods

Photochemistry involves untypical electronic structure situations that HF/DFT can't deal with

CASSCF

- Optimize MO and CI coefficients simultaneously
- Choose active space to define which configurations to include

Active space selection

- Size is severely limited by computational scaling
- Non-trivial, requires experience, chemical intuition, trial and error

Motivation to use multi-configurational methods

Photochemistry involves untypical electronic structure situations that HF/DFT can't deal with

CASSCF

- Optimize MO and CI coefficients simultaneously
- Choose active space to define which configurations to include

Active space selection

- Size is severely limited by computational scaling
- Non-trivial, requires experience, chemical intuition, trial and error

Other details

- Has many properties advantageous for nonadiabatic dynamics
- Often not accurate enough without a post-MCSCF treatment

Thank you for your attention!

Thank you for your attention!

My further thanks goes to:

