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Time-dependent density functional theory

What are people using to compute excited states?
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Time-dependent density functional theory: Foundations

Regular DFT only works for an non-degenerate ground state,
based on the scope of the Hohenberg–Kohn theorems.

Theoretical foundation of TDDFT:
▶ 1. Runge–Gross theorem: Correspondence between TD electron density �(r⃗ , t) and TD external

potential.
▶ 2. Runge–Gross theorem: Least action principle, giving hints how the TD electron density should

evolve.

Thus, TDDFT is formally possible. It requires a TD functional, which has some additional requirements
versus the Hohenberg–Kohn functional. E.g.,

▶ Causality (between external perturbation and density)
▶ Time non-locality (memory e�ect)
▶ Spatial non-locality (formally, local density approximation is incorrect in TDDFT)

Huix-Rotllant, Ferré, Barba�i: “Time-Dependent Density Functional Theory” in “�antum Chemistry and Dynamics of Excited
States” by González, Lindh (2021).
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Time-dependent density functional theory: Kohn–Sham

Finding the exact TD functional is harder than finding the exact density functional.
Usually, TDDFT is based on the Kohn–Sham approach.

TD density taken as density of TD KS determinant:

�(r⃗ , t) = ∑
i
fi |�i(r⃗ , t)|2 (1)

Time evolution according to TD-KS equations:

iℏ
)
)t
�i(r⃗ , t) = ℎ̂KS[�]�i(r⃗ , t) (2)

Here, ℎ̂KS[�] should depend on �(t′) ∀ t′ ≤ t . In practice, it usually only depends on �(t),
called the adiabatic local density approximation (ALDA).
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Time-dependent density functional theory: Solving the TD Kohn–Sham
equations
The first way to solve the TD-KS problem is real-time TDDFT (RT-TDDFT):

1 Start with the initial electron density
2 Introduce a periodic oscillating perturbating electric field ⃗(t) = ⃗0 cos(!t)
3 Simulate the temporal evolution of the electron density numerically
4 Obtain spectroscopic information from the Fourier transformation of the dipole moment

autocorrelation function.

Very flexible (for weak and strong fields, good scaling with system size) but generally demanding.
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Time-dependent density functional theory: Solving the TD Kohn–Sham
equations

The second way to solve the TD-KS problem is linear-response TDDFT (LR-TDDFT):

1 For weak external perturbations, use response theory in frequency domain

2 Derivation: Start at linear density ��(t), Fourier transform to frequency domain, derive response
function, solve for poles of response function

3 This leads to the Casida LR-TDDFT equation:

(
A B
−B −A)(

X⃗
Y⃗)

= !(
X⃗
Y⃗)

(3)

where matrices A and B have matrix elements:

Aia,jb = �ij�ab(�a − �i) +∬ �∗i (r)�a(r) [
1

|r − r ′|
+ f̂xc] �

∗
b(r

′)�j (r ′)drdr ′ (4)

Bia,jb = ∬ �∗i (r)�a(r) [
1

|r − r ′|
+ f̂xc] �

∗
j (r

′)�b(r ′)drdr ′ (5)
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Time-dependent density functional theory: LR-TDDFT

(
A B
−B −A)(

X⃗
Y⃗)

= !(
X⃗
Y⃗)

(6)

Some notes:
▶ A and B are formally depending on !, but not when using the ALDA. This approximation is present

in most TDDFT implementations.
▶ The equation has many eigenvalues ! that are the excitation energies of the system.

▶ For each !, there will be a pair of X⃗ and Y⃗ vectors that describe the response of the density:

��(r) = ∑
ia
Xia�∗a(r)�i(r) + Yia�a(r)�

∗
i (r) (7)

▶ Here, the vector X⃗ describes excitations i → a and Y⃗ describes deexcitations i ← a.
▶ O�en used is the Tamm-Danco� approximation (TDA) that sets B = 0 and thus Y⃗ = 0:

AX⃗ = !X⃗ . (8)
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Time-dependent density functional theory: Connection to HF and CIS

Starting from KS-DFT:
▶ derive LR-TDDFT via LR theory
▶ derive TDA from LR-TDDFT
▶ cannot go from KS-DFT directly

to TDA

Starting from HF:
▶ derive RPA via LR theory
▶ derive CIS from RPA
▶ can also derive CIS directly via

linear variational principle
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TDDFT: How good is it? General points

These points are valid for LR-TDDFT with the ALDA (most TDDFT calculations):
▶ TDDFT naturally depends on the reference state, hence on the used XC functional
▶ Errors in the excitation energy are usually up to ±0.5 eV, in good cases ±0.2 eV
▶ Pure functionals tend to give too low excitation energies
▶ More sophisticated functionals tend to give be�er results:

LDA < GGA < Hybrid < Range-separated hybrid < Double hybrid

The accuracy is also strongly dependent on the type of excitation:
▶ Local excitations (n� ∗, �� ∗, metal centered, . . . ): O�en good with hybrids.
▶ Rydberg exciations: O�en rather bad with errors ≫0.5 eV (due to self-interaction error and too low

ionization potentials).
▶ Charge transfer excitations (e.g., push–pull compounds or metal complexes): Requires

range-separated hybrids, otherwise appear much too low and spurious ghost states appear. Can be
identified by having li�le hole–electron overlap.

▶ Core excitations (for X-ray spectra): Similar to CT excitations, can be handled with empirical shi�s,
or with range-separated hybrids.

▶ Higher excitations: Can be very wrong, due to the neglect of doubly/higher excited determinants
and the too low ionization potential of DFT.

Laurent, Jacquemin: “TD-DFT benchmarks: A review”, IJQC 113, 2019–2039 (2013).
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TDDFT: How good is it? Dependence on reference state

▶ If DFT does not work, then TDDFT does not work
▶ Degenerate ground states: open-shell metal complexes, ...
▶ Degenerate ground states are also encountered in many dissociations

Problems in dissociation (a�ributed to KS-DFT, not TDDFT):
▶ RKS keeps electrons in pairs, precluding homolytic dissociation
▶ UKS allows unpaired electrons, but is spin-contaminated (very heavily in dissociation)
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TDDFT: How good is it? Conical intersections

A conical intersection is a region where two PESs touch each other. They have a special, important
topology:

Hdiab(x, y) = (
H11(x, y) H12(x, y)
H12(x, y) H22(x, y))

= (
x y
y −x) , Hadia(x, y) = (

−
√
x2 + y2 √

x2 + y2)
. (9)

Conical intersection forms when two conditions hold along two di�erent DOFs:
▶ H11 = H22: here at x = 0
▶ H12 = 0: here at y = 0

In TDDFT there are two problems:
▶ If H11 = H22, then KS-DFT is not well-defined and can produce instabilities.
▶ In TDDFT, the ground state is artificially fixed to one KS determinant and never mixes with the

excited states. Hence, there is no coupling and H12 = 0 everywhere (not only at y = 0).

Sebastian Mai Excited States with TDDFT and with LVC 10



TDDFT: How good is it? Conical intersections II
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TDDFT: What can we use it for?

TDDFT for nonadiabatic dynamics:
▶ Is one of the cheapest, easiest to use, most available methods
▶ Produces reasonable PESs for many cases
▶ Avoid transitions between TDDFT states and reference state (general caveat for single-reference

methods)
▶ Pay a�ention to the system and kinds of states, choose functional wisely
▶ Avoid dissociation or extreme deformation of the molecule

Example of what works well:
▶ Dynamics that start in Sn , relaxes to S1, and then undergoes ISC to Tn and later to T1
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TDDFT: Computational cost of nonadiabatic dynamics
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Linear vibronic coupling models

What can we do when ab initio methods are too expensive?
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Linear vibronic coupling model

Coordinate Q

En
er
gy

H =
(ω
2 Q

2

ω
2 Q

2

)
+

(
ε1+κ1Q λ12Q
λ12Q ε2+κ2Q

)
+ ĤSOC

Linear vibronic coupling (LVC)
▶ Use identical harmonic oscillators,

▶ shi� to get diabatic state,
▶ repeat,
▶ and add linear vibronic couplings
▶ ... to get adiabatic states!
▶ Can also include spin–orbit couplings.

+ Speed up: 3–5 orders of magnitude vs. ab initio

− Only for rigid molecules and short time scales

Penfold et al., Chem. Rev. 118, 6975 (2018).
F. Plasser, S. Gómez, M. Menger, S. Mai, L. González, PCCP 21, 57, (2019).
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Linear vibronic coupling model
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Linear vibronic coupling model
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Linear vibronic coupling model
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Linear vibronic coupling model: Multidimensional models

Hdiab(Q⃗) = ∑
i
Q2
i
!i
2

⎛
⎜
⎜
⎜
⎝

1
1

1
⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
harmonic oscillator

+
⎛
⎜
⎜
⎜
⎝

"1
"2

"3
⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
vertical shi�s

+∑
i
Qi

⎛
⎜
⎜
⎜
⎝

�1i
�2i

�3i
⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
gradients

+∑
i
Qi

⎛
⎜
⎜
⎜
⎝

�12i �13i ⋯
�12i �23i
�13i �23i
⋮ ⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
linear couplings

+
⎛
⎜
⎜
⎜
⎝

�12 �13 ⋯
�12 �23
�13 �23
⋮ ⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
constant couplings

+∑
d

d

⎛
⎜
⎜
⎜
⎝

�11d �12d �13d ⋯
�12d �22d �23d
�13d �23d �33d
⋮ ⋱

⎞
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
electric field–dipole couplings

Superscripts: indices of diabatic states, subscripts: normal modes.

Definition of normal mode coordinates:

Qi =
√
!i

atoms
∑
a

3
∑
d
Kad,i

√
Ma(rad − r ref

ad ) (10)
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Linear vibronic coupling model: Multidimensional models
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Linear vibronic coupling model: Parameters

Set of parameters for harmonic oscillators:
▶ Normal mode frequencies !i : 3Natom − 6 parameters
▶ Normal mode transformation matrix with elements Kad,i : (3Natom − 6)(3Natom) parameters

▶ Normal mode reference geometry with coordinates r ref
ad : 3Natom parameters

▶ Atom masses Ma : Natom parameters

In SHARC, these parameters are contained in the file V0.txt.

Set of parameters for excited states:
▶ Vertical shi�s "� : Nstates parameters
▶ Gradient terms ��i : (3Natom − 6)Nstates parameters

▶ Linear vibronic couplings ���i : (3Natom − 6)N 2
states parameters

▶ Constant spin–orbit couplings ��� : N 2
SO states parameters

▶ Dipole moment terms ���d : 3N 2
states

In SHARC, these parameters are contained in the file LVC.template.
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Linear vibronic coupling model: Obtaining parameters

Parameters for the harmonic oscillators:

1 Choose desired reference state (o�en S0, PES should look similar to relevant states)

2 Optimize minimum of reference state

3 Do frequency calculation of reference state

The SHARC script wigner.py can then produce the file V0.txt.

Parameters for excited states:
1 Run a single point calculation at reference geometry:

▶ Excitation energies: "�
▶ (Transition) dipole moments: ���d
▶ Spin–orbit couplings: ���
▶ Gradients transformed into normal mode coordinates: ��i

2 Run 6Natom displaced single point calculations
▶ Compute numerical derivatives of diabatic Hamiltonian: ���i

This involves three steps, (i) using setup_LVCparam.py, (ii) running calculations in all created folders, (iii)
using create_LVCparam.py to extract parameters and write the file LVC.template.
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Linear vibronic coupling model: Acetone

Complex LVC model
▶ Model for n3p Rydberg

and �� ∗ states (grey box)
▶ Ab initio level of theory:

SOS-ADC(2)/cc-pVTZ
+aug(10s8p6d4f) on O

▶ 24 !i
▶ 720 Kad,i
▶ 30 r ref

ad
▶ 10 Ma
▶ 49 "�

▶ 392 nonzero ��i
▶ 7280 nonzero ���i

LVC model
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6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

C=O Bond distance (Å)

En
er
gy

(e
V
)

A1 A2 B1 B2 Ab initio

1.1 1.2 1.3 1.4 1.5 1.6
C=O Bond distance (Å)
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LVC: Computational cost of nonadiabatic dynamics
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Summary

Time-dependent density functional theory (TDDFT)
▶ A lot of formal math and derivations
▶ Practical LR-TDDFT with ALDA works like CIS, but is more accurate
▶ Cheap and easy to use, but errors depend strongly on system, state, and functional
▶ Avoid conical intersections to the reference state and dissociations in nonadiabatic dynamics

Computational cost of nonadiabatic dynamics

▶ A typical ab initio surface hopping project (100 trajectories, 1 ps) can cost anywhere
from few 100 CPUh (few $) to tens of millions CPUh (>100,000$)

Linear vibronic coupling (LVC) models
▶ Analytical model for coupled PESs
▶ Shi�ed and coupled multi-dimensional harmonic oscillators in normal mode coordinates
▶ Works well for rigid molecules with similar states and extremely easy to parametrize
▶ Extremely e�icient (3–5 orders of magnitude faster than ab initio)
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