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Outline

1 Defining the chemical problem
2 Choosing the level of theory
3 Preparing the initial conditions
4 Se�ing up the trajectories
5 Running the trajectories
6 Validating the trajectories
7 Analyzing individual trajectories
8 Analyzing the trajectory swarm for

statistics
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Outline

1 Defining the chemical problem
2 Choosing the level of theory
3 Preparing the initial conditions
4 Se�ing up the trajectories
5 Running the trajectories
6 Validating the trajectories
7 Analyzing individual trajectories
8 Analyzing the trajectory swarm for

statistics What was it again that we were interested in
about this molecule?
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The chemical problem
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▶ Ultrafast dynamics a�er photo-excitation of methylene immonium cation CH2NH+

2

▶ Dynamics similar to ethylene? (�� ∗ state, torsion around double bond)

�estions:
▶ Involved electronic states?
▶ Deactivation processes?
▶ Time scales?
▶ Photochemical products and yields?
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Outline

A�er taking days or weeks to ...
▶ choose and validate the level of theory, . . .

▶ prepare initial conditions that model the processes you want to study, . . .
▶ setup all simulations with suitable methodological choices, . . .
▶ and wait while burning computer time, . . .

your simulations are finished and the fun of analyzing them starts!
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Outline

1 Defining the chemical problem
2 Choosing the level of theory
3 Preparing the initial conditions
4 Se�ing up the trajectories
5 Running the trajectories
6 Validating the trajectories
7 Analyzing individual trajectories
8 Analyzing the trajectory swarm for

statistics Did anything go wrong?
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Possible error sources

Computational errors:
▶ Network problems
▶ I/O errors
▶ Job was killed
▶ Recoverable

Electronic structure
convergence errors:
▶ Calculation does not finish
▶ O�en not recoverable

Numerical artifacts:
▶ Total population not

conserved
▶ Total energy not

conserved
▶ Non-continuous potential

energy surfaces
▶ Non-continuous kinetic

energy
▶ Intruder states
▶ Surface hops over large

energy gaps
▶ . . .
▶ Might go unnoticed!
▶ Checks required
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Example trajectory I
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▶ Trajectory does not show
numerical artifacts.

▶ Intruder state at 21 fs (but
no problem).
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Example trajectory II
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▶ Total energy and potential
energies jump at 26 fs.

▶ Sudden exchange of active
orbitals.
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Example trajectory III
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▶ Jumps in the total energy
while potential energies
are smooth.

▶ Badly converged gradient
computation or too long
time steps.
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Example trajectory III
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Example trajectory IV
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▶ Surface hop over large
energy di�erence.

▶ Di�erent possible reasons,
needs closer analysis.
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Example trajectory IV
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Trajectory curation

Checking all 210 trajectories shows many problems.
▶ Simulations should possibly be repeated with larger active space, like CAS(12,7).
▶ Might need di�erent electronic structure se�ings
▶ For larger projects, this is usually not feasible.

▶ One can also discard problematic trajectories, but:
▶ Be transparent when reporting this
▶ Keep in mind possible biases introduced
▶ Analyze discarded trajectories separately

Result: We keep 90 out of 210 trajectories for analysis.
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Outline

1 Defining the chemical problem
2 Choosing the level of theory
3 Preparing the initial conditions
4 Se�ing up the trajectories
5 Running the trajectories
6 Validating the trajectories
7 Analyzing individual trajectories
8 Analyzing the trajectory swarm for

statistics Isn’t this a surprising behaviour?
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Goals of the individual analysis

Important:
Analyzing the trajectories individually is not the main way to analyze the results:
▶ It is tedious.
▶ It is subjective.
▶ It is non-reproducible.
▶ It might lead to non-significant findings.
▶ It might su�er from di�erent cognitive biases.

It can still be useful:
▶ Use pa�ern recognition of human brain to find interesting trends/behaviors/aspects.
▶ Formulate hypotheses that can then be tested.
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Example trajectory I: Energies and states

▶ Oscillator strength indicates state (�� ∗, �� ∗, closed shell), see coloring.
▶ Two surface hops bring trajectory to ground state, where strong vibrations appear.
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Example trajectory I: Nuclear motion

0 fs 10 fs 20 fs 30 fs 40 fs 50 fs

60 fs 70 fs 80 fs 90 fs

▶ Strong C=N stretch, pyramidalization, torsion, hydrogen migration

Sebastian Mai Trajectory Ensemble Analysis with SHARC 16



Hypotheses

. . . a�er inspecting all trajectories:

1 Relaxation time scale: Sequential decay from S2 (�� ∗) to S1 (�� ∗) and then to S0 (closed shell) in
less than 100 fs.

2 Relaxation mechanism: Important motion is a combination of C=N stretch, pyramidalization, and
torsional motion. The conical intersections are easy to reach (no barriers).

3 Photochemical products: Possible rearrangements: H migration, H2 elimination, or C=N
dissociation.

4 Product ratios: Most trajectories do not undergo migration, elimination, or dissociation.
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Outline

1 Defining the chemical problem
2 Choosing the level of theory
3 Preparing the initial conditions
4 Se�ing up the trajectories
5 Running the trajectories
6 Validating the trajectories
7 Analyzing individual trajectories
8 Analyzing the trajectory swarm for

statistics How can we make sense of all this data?
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Electronic evolution
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▶ Initially in S2
▶ S1 is intermediate state
▶ �ick return to S0
▶ Sequential transfer (verified with hopping analysis)
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Electronic evolution: Kinetic modeling

Sequential, uni-molecular, first-order kinetic model:

S2

k21

←←←←←←←←←←←←←←←←←←←←←→ S1

k10

←←←←←←←←←←←←←←←←←←←←←→ S0, (1)

Corresponding di�erential equation system:

d
dt
S2(t) = − k21S2(t),

d
dt
S1(t) = + k21S2(t) − k10S1(t),

d
dt
S0(t) = + k10S1(t),

Solutions:

S2(t) =e−k21t ,

S1(t) = −

k21

k21 − k10

e−k21t +
k21

k21 − k10

e−k10t ,

S0(t) = +

k10

k21 − k10

e−k21t −
k21

k21 − k10

e−k10t + 1.

▶ Fi�ing functions
▶ Fi�ing parameters:
�S2→S1

=
1

k21
and �S1→S0

=
1

k10
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Electronic evolution: Time constants
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▶ Good fit, su�icient time scale and number of trajectories
▶ Uncertainty through bootstrapping algorithm
▶ Can compare time scales to experiment

1 Relaxation time scale: Sequential decay from S2 (�� ∗) to S1 (�� ∗) and then to S0 (closed shell) in
less than 100 fs. CONFIRMED
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Nuclear evolution: C=N bond

H
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H
⊕
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▶ Strong increase in bond length
▶ Some coherent motion
▶ Spli�ing of trajectory swarm
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Nuclear evolution: C–H and N–H bonds
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▶ Most bonds are stable
▶ Some dissociation
▶ Some migration
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Nuclear evolution: Dihedral angles
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▶ Initially planar
▶ Double bond is broken in excited state, free rotation around bond
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Nuclear evolution: Hopping geometries and conical intersections

S0 minimum S2/S1 minimum-energy CoIn S1/S0 minimum-energy CoIn

▶ Extract hopping geometries: find what motion leads to S2/S1 and S1/S0 crossing points.

▶ S2/S1 transfer is mediated by pyramidalization and C=N stretch
▶ S1/S0 transfer is mediated by torsion
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Nuclear evolution: Importance of minimum crossing points

▶ In this molecule, there is a 10-dimensional intersection space.
▶ Optimized conical intersections are only one point in this space.

▶ Trajectories hop at many di�erent geometries distributed around the conical intersection.
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Nuclear evolution: Potential energy surfaces
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▶ Path from starting point to conical intersections to end point.
▶ Path is barrierless.

2 Relaxation mechanism: Important motion is a combination of C=N stretch, pyramidalization, and
torsional motion. The conical intersections are easy to reach (no barriers). CONFIRMED
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Photochemistry products

Some trajectories did not return to initial S0 minimum.

Di�erent products:
▶ H migration to CH3-NH+

▶ H migration to CH-NH+

3

▶ H2 elimination
▶ Dissociation to CH2 and NH2 fragments
▶ Any others?

Automatically identify products: through geometry parameters.
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Photochemistry products: example trajectory I

0 fs 30 fs 60 fs 90 fs
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Photochemistry products: example trajectory II

0 fs 30 fs 60 fs 90 fs
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Photochemistry products: Branching ratios

Reaction pathway Trajectories Percentage

Unreactive 65 72%
H2 elimination to C=N+

2
10 11%

H migration to CH3–NH+ 7 8%
H migration to CH–NH+

3
5 6%

C=N dissociation 3 3%

3 Photochemical products: Possible rearrangements: H migration, H2 elimination, or C=N
dissociation. CONFIRMED

4 Product ratios: Most trajectories do not undergo migration, elimination, or dissociation.
CONFIRMED
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Simulating time-dependent spectra

Most nonadiabatic dynamics is experimentally measured with time-dependent spectroscopy. Examples:
▶ Infrared spectroscopy
▶ Transient absorption
▶ Photoionization
▶ X-ray sca�ering
▶ Photoluminescence

How to compute time-dependent photoluminescence spectrum:

S(E, t) =

1

Ntraj

traj

∑

j

states
∑

�

(fosc)
j

�→�
(t) ⋅ e

−
4 ln 2

FWHM2

E

(
E−ΔE

j

�→�
(t)

)

2

. (2)

With broadening through an instrument response function:

S
conv

(E, t) =

time steps

∑

i

S(E,Δti) ⋅ e
−

4 ln 2

FWHM2

t

(t−Δti )
2

. (3)
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Simulating time-dependent spectra: Results

▶ Computed fs luminescence spectrum with broadening of 2.0 eV and 10 fs

▶ �ick decrease in luminescence energy: decay to ground state
▶ Spli�ing of swarm can be discerned
▶ Can be compared to suitable experiment
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Summary I

Chemical problem

Simulate the photo-induced nonadiabatic dynamics of the methylene immonium cation CH2NH+

2
.

Methods

Surface hopping coupled to multi-reference configuration interaction (MRCI) with a CAS(6,4) active space.

Initial conditions

Wigner distribution around S0 minimum, excited vertically at 9.29–9.59 eV to the S2 (�� ∗) state.
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Summary II

Se�ings

210 trajectories were propagated for 100 fs with a 0.5 fs time step. Typical se�ings for surface hopping
were used (decoherence, kinetic energy rescaling, . . . ).

Execution

A single time step took about 5 min. Therefore, 200 steps took 19 hours and 210 trajectories then cost
4000 CPU hours.

Validation

Many trajectories had numerical artifacts so that the swarm was reduced to 90 suitable trajectories.
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Summary III

Individual analysis

Four hypotheses:

1 Fast, sequential S2 → S1 → S0 decay.

2 Important motion C=N stretch, pyramidalization, and torsion.

3 We can have H migration, H2 elimination, or other processes.

4 Most trajectories do nothing.

Statistical analysis

1 S2 → S1 decays with 18±2 fs and S1 → S0 with 51±6 fs without barriers.

2 Conical intersections involve C=N stretch, pyramidalization, and torsion.

3 We find H2 elimination (11%), H migration (8%+6%), and C=N dissociation (3%).

4 Most trajectories do nothing (72%).
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Thank you for your a�ention!

My further thanks goes to:
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