

TDDFT

Daniel Mejia-Rodriguez, Edoardo Aprà & Niri Govind 2023 CyberWorkshop

Time-Dependent DFT

Casida Formulation

Perturbed density \rightarrow first-order correction Linear response approach \rightarrow frequency domain

Cannot be used to describe excitations in intense fields

 $\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$ $1 = \begin{pmatrix} X | X \end{pmatrix} - \begin{pmatrix} Y | Y \end{pmatrix}$ $A_{ia,jb} = \delta_{ij} \delta_{ab} \left(\varepsilon_a - \varepsilon_i \right) + \left(ia | F_H + F_{xc} | jb \right)$ $B_{ia,jb} = \left(ia | F_H + F_{xc} | jb \right)$ $F_{xc} \left(r_1, r_2 \right) = \frac{\partial^2 f}{\partial \rho(r_1) \partial \rho(r_2)}$

Time-Dependent Density Functional Theory, Marques et al, Springer 2006 Excited State Calculations with TDDFT

- Optical properties (UV/Vis)
- Pre- and near-edge X-ray absorption (XANES)
- TDDFT Gradients/Optimization

UV/Vis & X-ray Spectroscopy

Basic UV/Vis Input

geometry

0	0.0000000	0.0000000	0.12982363
H	0.75933475	0.0000000	-0.46621158
н	-0.75933475	0.0000000	-0.46621158
end			

basis

O library 6-31G** H library 6-31G** end

dft xc b3lyp end tddft nroots 10 end

task tddft energy

Sample UV/Vis Output

Root 1 singlet b2	0.294221368 a.u.	8.0062 eV
Transition Moments Transition Moments Transition Moments Dipole Oscillator St Electric Quadrupole Magnetic Dipole Total Oscillator Str	X -0.00000 Y 0.26890 Z 0.00000 XX -0.00000 XY 0.00000 XZ 0.00000 YY -0.00000 YZ -0.08066 ZZ -0.00000 crength 0.0141833591 0.000000009 0.0000000219 0.0141834819	
Occ. 5 b2	Virt. 6 al 1.00002 X	
Root 2 singlet a2	0.369097480 a.u.	10.0437 eV
Transition Moments Transition Moments Transition Moments Dipole Oscillator St Electric Quadrupole Magnetic Dipole Total Oscillator Str	X -0.00000 Y 0.00000 Z -0.00000 XX -0.00000 XY 0.24936 XZ 0.00000 YY 0.00000 YZ -0.00000 ZZ -0.00000 crength 0.000000000 0.000000166 sength 0.0000003515	
Occ. 5 b2	Virt. 7 b1 -0.99936 X	
Root 3 singlet a1	0.387064731 a.u.	10.5326 eV
Transition Moments Transition Moments	x -0.00000 y -0.00000 z 0.60463 xx -0.62351 xy 0.00000 xz 0.00000	

UV/Vis Spectrum (different broadenings)

python3 nw_spectrum.py -b0.25 -p5000 < h2o_tddft_uvvis.out>h2o_tddft_uvvis.data.b025
python3 nw_spectrum.py -b2.00 -p5000 < h2o_tddft_uvvis.out>h2o_tddft_uvvis.data.b200

Basic XANES Input

```
geometry units angstrom noautosym nocenter
 00
           0
                     0
           0.00
 C 0
                     1.15
end
basis
  * library aug-cc-pvtz
end
dft
  xc b3lyp
end
task dft optimize
dft
  xc beckehandh
end
tddft
  cis
  ecut -15 €
  nroots 30
                            on final states
  notriplet
  thresh 1e-04
end
task tddft
```

Defines the initial state(s) All (core) states below energy of -15 au are taken as initial states. No restriction on final states

Alternate input for XANES

```
geometry units angstrom noautosym nocenter
 0 0
           0
                     0
 C 0
           0.00
                     1.15
end
basis
  * library aug-cc-pvtz
end
dft
  xc b3lyp
end
task dft optimize
dft
  xc beckehandh
end
tddft
  cis
                                      Defines the initial state(s)
  ewin -20.0 -10.0 ←
                                      with energy windows
  nroots 30
  notriplet
  thresh 1e-04
end
task tddft
```

Sample XANES Output

••••

Root 1 singlet a	19.467775490 a.u.	529.7454 eV
Transition Moments Transition Moments Transition Moments Dipole Oscillator S Electric Quadrupole Magnetic Dipole Total Oscillator St	X -0.05038 Y 0.00001 Z 0.00000 XX 0.00000 XY -0.00000 XZ 0.00222 YY 0.00000 YZ -0.00000 ZZ 0.00000 trength 0.0329382748 0.000001929 0.000001929 0.000000133 0.0329384810	
Occ. 1 a	Virt. 8 a -0.98992 Virt. 16 a -0.12916	
Root 2 singlet a Transition Moments Transition Moments Transition Moments Dipole Oscillator S Electric Quadrupole Magnetic Dipole Total Oscillator St Occ. 1 a	19.467775490 a.u. X -0.00001 Y -0.05038 Z -0.00000 XX -0.00000 XY -0.00000 XZ 0.00000 YY -0.00000 YZ 0.00222 ZZ 0.00000 trength 0.0329382748 0.0000001929 0.0000001929 0.000000133 rength 0.0329384810 Virt. 9 a -0.98992	529.7454 eV
Occ. 1 a	Virt. 17 a -0.12916	
Root 3 singlet a	19.835495901 a.u.	539.7515 eV

python3 nw_spectrum.py -b0.1 -p5000
<co_tddft_xanes_basic.out>co_tddft_xanes_basic-b0.1

Other Examples: O K-edge in Water and O, C K-edges in CO

∆ = +14.6 eV [atomic | 0.03 0.02 Abs. 0.01 Water O K-edge gas phase x-ray absorption 0 0.03 [arbitrary units] Experiment - LR-TDB3LYP Abs. [arbitrary units] Abs. [atomic units] 0.8 0.025 ---- RT-TDB3LYP 0.6 0.02 Δ = +15.4 eV 0.4 0.015 0.2 Abs. 0.01 0.005 0 Peak A: 534 eV, 1 530 535 540 545 550 $O 1s \rightarrow O p_x, C p_x, O d, O f$ 0 Energy [eV] $0 1s \rightarrow 0s, Hs, Op_z$ Experiment 1.0 Carbon monoxide C K-edge gas phase x-ray absorption 0.8 0.1 0.6 Abs. [atomic units] - LR-TDB3LYP C 0.08 ---- RT-TDB3LYP 0.4 Δ = +11.4 eV 0.06 0.2 0 0.04 Peak B: 538 eV. ↔ 535 545 550 530 540 0.02 $O 1s \rightarrow O p_x$, H s, H p_x D Energy [eV] 0 Abs. [arbitrary units] Experiment 0.8 0.6 0.4 0.2 0 286 288 290 292 294 296 298 300 Energy [eV]

Details: JCTC, 8, 3284 (2012)

Carbon monoxide O K-edge gas phase x-ray absorption

- LR-TDB3LYP

---- RT-TDB3LYP

Peak E: 534 eV, ↔

 $0 1s \rightarrow 0 p_x, C p_x$

Peak F: 546 eV, ↔

Peak C: 287 eV, ↔

 $C 1s \rightarrow C p_x, O p_x$

Peak D: 292 eV, ↔

 $C 1s \rightarrow C f, C p_x, O p_x$

0.05

0.04

units]

Excited-State Optimization

Optimization on the excited state

Analytic TDDFT Gradients/Opt in NWChem

Available functionals for TDDFT gradients/optimization/dynamics

Table 1. Definitions of the XC Functionals^a

functional	definition
LDA	Slater + VWN 5
BP86	Becke 88 + Perdew 86
PBE	PBEx + PBEc
BLYP	Becke 88 + LYP
B3LYP	Slater (80%) + Becke 88 (nonlocal, 72%) + HF Exchange (20%) + LYP (81%) + VWN 1 RPA (19%)
PBE0	PBEx (75%) + HF Exchange (25%) + PBEc
BHLYP	Slater (50%) + Becke 88 (nonlocal, 50%) + HF Exchange (50%) + LYP
CAM- B3LYP	CAM-Becke 88 ($\alpha = 0.19, \beta = 0.46, \omega = 0.33$) + LYP
LC-PBE	CAM-PBE ($\alpha = 0.00, \beta = 1.00, \omega = 0.30$) + PBEc
LC-PBE0	CAM-PBE ($\alpha = 0.25, \beta = 0.75, \omega = 0.30$) + PBEc
BNL	Baer–Neuhauser–Livshits ($\alpha = 0.00, \beta = 1.00, \omega = 0.33$) + LYP
LC- wPBE	LC- ω PBE ($\alpha = 0.00, \beta = 1.00, \omega = 0.30$) + PBEc
LC- wPBEh	LC- ω PBE ($\alpha = 0.20, \beta = 0.80, \omega = 0.20$) + PBEc
LC-BLYP	CAM-Becke 88 ($\alpha = 0.00, \beta = 1.00, \omega = 0.33$) + LYP

Details: J. Chem. Theory Comput., 2013, 9 (12), pp 5490-5503

Basic TDDFT Optimization Input

```
geometry units angstrom noautosym nocenter
 0 0
           0
                     0
 C 0
           0.00
                     1.15
end
basis
  * library 6-31G*
end
dft
  xc pbe0
end
task dft optimize
tddft
  nroots 2
  notriplet
  civecs
  grad
    root 1
  end
end
task tddft optimize
```

Defines root on which the excited state gradient/optimization is performed

Linear-Response Time-Dependent DFT **Casida Formulation**

Cannot be used to describe excitations in intense fields

Perturbed density \rightarrow first-order correction Linear response approach \rightarrow frequency domain

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
$$1 = \begin{pmatrix} X | X \end{pmatrix} - \begin{pmatrix} Y | Y \end{pmatrix}$$
$$A_{ia,jb} = \delta_{ij} \delta_{ab} \left(\varepsilon_a - \varepsilon_i \right) + \left(ia | F_H + F_{xc} | jb \right)$$
$$B_{ia,jb} = \left(ia | F_H + F_{xc} | jb \right)$$
$$F_{xc} \left(r_1, r_2 \right) = \frac{\partial^2 f}{\partial \rho(r_1) \partial \rho(r_2)}$$

Time-Dependent Density Functional Theory, Marques et al, Springer 2006

Real-Time TDDFT

- Response beyond perturbation limit, anharmonic effects
- Depends only on the XC potential
- Real-time, real-space \rightarrow full dynamical information
- Insight into ultrafast and nonlinear processes

JCTC 7, 1344 (2011)

Ultrafast Electron Dynamics

K.Lopata

Questions?

Thank you

