

Libra Summer School and Workshop 2024 TSH: Part 1

Alexey Akimov

University at Buffalo, SUNY

July 9, 2024

Basic Concepts and Terminology of Nonadiabatic Dynamics

Born-Oppenheimer Approximation

 $\widehat{H}(\widehat{\boldsymbol{r}},\widehat{\boldsymbol{R}},t) = \widehat{T}(\widehat{\boldsymbol{R}}) + \widehat{H}_{el}(\widehat{\boldsymbol{r}},\widehat{\boldsymbol{R}},t) + \widehat{V}_{nn}(\widehat{\boldsymbol{R}},t)$

 $\widehat{H}(\widehat{\boldsymbol{r}},\widehat{\boldsymbol{R}})\Psi_{n}(\boldsymbol{r},\boldsymbol{R})=E_{n}\Psi_{n}(\boldsymbol{r},\boldsymbol{R})$

Includes el-el and el-nucl interactions

This is an **electron-nuclear (vibronic)** Hamiltonian

This is an **electron-nuclear (vibronic)** wavefunction

<u>Born-Oppenheimer approximation</u>: a general time-scale separation approximation = there are fast and slow degrees of freedom, in general. Enables factorization $X(fast, slow) \approx x(slow)y(fast; slow)$ the adiabatic approximation applied to electrons and nuclei

- Nuclei are heavier than electrons, so nuclei are seeing by electrons as static entities
- Electrons move in the field created by immobile nuclei and themselves
- $m_{nucl} \gg m_{elec}$, so treat nuclei classically, and electrons quantum-mechanically

Potential energy surfaces (PES)

$$E_n(\mathbf{R}) = \langle \Psi_n(\mathbf{r}, \mathbf{R}) | \hat{H}_{el}(\mathbf{r}, \mathbf{R}) | \Psi_n(\mathbf{r}, \mathbf{R}) \rangle_r + V_{nn}(\mathbf{R})$$

- Energy of a given state as a function of nuclear coordinates
- Multidimensional, but one is often interested in lower-dimensional cuts (profiles)
- Topology: minima, maxima, barriers, saddle points
- Reaction coordinate a collective transformation of all atoms
- Present only as a consequence of the BO approximation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile %3APotential_Energy_Surface_and_Corresponding_Reaction_Coordinate_Diagram.png&psig=AOv Vaw3JUnkD5y1MiNgWew9eCb6c&ust=1588191360500000&source=images&cd=vfe&ved=0CAIQj RxqFwoTCJj3nob4i-kCFQAAAAAdAAAABAg https://www.google.com/url?sa=i&url=http%3A%2F%2Fwwwuser.gwdg.de%2F~ggroenh%2Fresearch.ht ml&psig=AOvVaw3JUnkD5y1MiNgWew9eCb6c&ust=1588191360500000&source=images&cd=vfe&ved= 0CAIQjRxqFwoTCJj3nob4i-kCFQAAAAAdAAAABAa

Potential energy surfaces define the reactive dynamics

Credit: Brendan Smith

Tiers of approximation to the molecular Hamiltonian Disregard the form of the wavefunction for now

University at Buffalo The State University of New York

Exact TD-SE

 $i\hbar \frac{\partial \Psi(t, \boldsymbol{r}, \boldsymbol{R})}{\partial t} = \left[\hat{T}(\hat{\boldsymbol{R}}) + \hat{H}_{el}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{R}}) + \hat{V}_{nn}(\hat{\boldsymbol{R}}) \right] \Psi(t, \boldsymbol{r}, \boldsymbol{R})$

Electronic DOFs are still operators (quantum)

TD-SE with the BO $i\hbar \frac{\partial \Psi(t, \boldsymbol{r}, \boldsymbol{R})}{\partial t} = [\hat{T}(\hat{\boldsymbol{R}}) + \hat{H}_{el}(\hat{\boldsymbol{r}}; \boldsymbol{R}) + \hat{V}_{nn}(\boldsymbol{R})]\Psi(t, \boldsymbol{r}, \boldsymbol{R})$

Nuclear DOFs are variables – could be independent (quantum) or could be time-dependent (classical path)

In general, we still have nuclear kinetic energy operator (for quantum nuclei)

Everything is operators!

TD-SE with the classical path approximation (CPA) $i\hbar \frac{\partial \Psi(t, \mathbf{r}, \mathbf{R})}{\partial t} = [T(\mathbf{P}) + \hat{H}_{el}(\hat{\mathbf{r}}; \mathbf{R}(t)) + \hat{V}_{nn}(\mathbf{R}(t))]\Psi(t, \mathbf{r}, \mathbf{R})$ Nuclear DOFs are time-dependent variables

Kinetic energy is a function of momentum

Adiabatic Approximation. Adiabatic and Nonadiabatic Dynamics

When NA dynamics is needed: Failure of the Born-Oppenheimer Approximation

 $v = \frac{p}{2}$

 $E_{kin} \gg |E_i - E_i|$

- high-energy (momentum) e.g. colliding particles
- degeneracies of quantum states (bond-breaking, plasmas, metals)

BO approximation breaks down here, non-adiabatic regime

Tiers of approximations to the wavefunction

The solution largely depends on the approximation we make to represent the total wavefunction $\Psi(t, r, R)$ **Nonadiabatic** Adiabatic

Exact factorization

Agostini, F.; Curchod, B. F. E. *WIREs Computational Molecular Science* **2019**, *9*, e1417.

Quantum nuclei, with BO approximation (AIMS, QTAG, etc.)

Makhov, D. V.; Glover, W. J.; Martinez, T. J.; Shalashilin, D. V. J. Chem. Phys. **2014**, *141*, 054110.

Wavepacket-dressed trajectories

Dutra, M.; Garashchuk, S.; Akimov, A. V. *Int. J. Quantum Chem.* **2023** e27078.

Bare trajectories

Tully, J. C. J. Chem. Phys. 1990, 93, 1061–1071.

 $\Psi(t, \mathbf{r}, \mathbf{R}) = \chi(t, \mathbf{R}) \Phi_{\mathbf{R}}(t, \mathbf{r})$ $\int d\mathbf{r} |\Phi_{\mathbf{R}}(\mathbf{r}, t)| = 1, \forall \mathbf{R}$ $\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R})$ $\Psi(t, \mathbf{r}, \mathbf{R}) = \chi(t, \mathbf{R}) \Phi(\mathbf{r}; \mathbf{R})$

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R}(t)) \qquad \Psi(t, \mathbf{r}, \mathbf{R}) = \chi(t, \mathbf{R}) \Phi(\mathbf{r}; \mathbf{R}(t))$$

$$\Psi(t, \mathbf{r}; \mathbf{R}(t)) = \sum_{i} c_{i}(t) \Phi_{i}(\mathbf{r}; \mathbf{R}(t)) \qquad \Psi(t, \mathbf{r}; \mathbf{R}(t)) = c(t) \Phi(\mathbf{r}; \mathbf{R}(t))$$

Terminology: Adiabatic and Diabatic States

Adiabatic

- unique
- eigenstates of molecular Hamiltonian:
- not always chemically-intuitive

```
Adiabatic (Hamiltonian is diagonal):

\langle \psi_{adi,i} | \hat{H}_{el} | \psi_{adi,j} \rangle = 0, \forall i \neq j
```

(Quasi-)Diabatic

- non-unique, infinite # of possibilities
- Is not an eigenstate of molecular Hamiltonian
- usually chosen to be chemically-intuitive

Diabatic (NACs are exactly zero): $\langle \psi_{dia,i} | \nabla_{\mathbf{R}} | \psi_{dia,j} \rangle = 0, \forall \mathbf{R}$

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Time_Dependent_Quantum_Mechanics_and_Spectroscopy_(Tokmakoff)/06%3A_Adiabatic_Approximation/6.03%3A_Diabatic_and_Adiabatic_St ates

Examples of Deriving Equations of Motion with Different Approximations

Example 1: BO with quantum nuclei

$$i\hbar \frac{\partial \Psi(t, \boldsymbol{r}, \boldsymbol{R})}{\partial t} = H(t, \hat{\boldsymbol{r}}, \hat{\boldsymbol{R}}) \Psi(t, \boldsymbol{r}, \boldsymbol{R})$$

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R})$$

Example 2: BO with wavepacket-dressed trajectories

$$i\hbar \frac{\partial \Psi(t, \boldsymbol{r}, \boldsymbol{R})}{\partial t} = H(t, \hat{\boldsymbol{r}}, \boldsymbol{R}) \Psi(t, \boldsymbol{r}, \boldsymbol{R})$$

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R}(t))$$

Case 1: Compute the action of \widehat{T} on Ψ

$$\nabla^{2}(AB) = \nabla \big(\nabla (AB) \big) = \nabla \big((\nabla A)B + A\nabla B \big) = (\nabla^{2}A)B + 2(\nabla A)(\nabla B) + A\nabla^{2}B$$

$$\left(\sum_{\alpha} -\frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2\right) \chi_j \Phi_j = \left(\sum_{\alpha} -\frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 \chi_j\right) \Phi_j - \left(2\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha} \Phi_j \nabla_{\alpha} \chi_j\right) + \left(\sum_{\alpha} -\frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 \Phi_j\right) \chi_j$$

$$\widehat{T}\chi_{j}\Phi_{j} = (\widehat{T}\chi_{j})\Phi_{j} - \left(\sum_{\alpha}\frac{\hbar^{2}}{M_{\alpha}}\nabla_{\alpha}\Phi_{j}\nabla_{\alpha}\chi_{j}\right) + (\widehat{T}\Phi_{j})\chi_{j}$$

We keep all terms, because Φ is a function of R

Project on an arbitrary state Φ_i :

$$\left\langle \Phi_{i} | \hat{T} | \chi_{j} \Phi_{j} \right\rangle_{r} = \left\langle \Phi_{i} | \Phi_{j} \right\rangle_{r} \hat{T} \chi_{j} - \left(\sum_{\alpha} \frac{\hbar^{2}}{M_{\alpha}} \left\langle \Phi_{i} | \nabla_{\alpha} \Phi_{j} \right\rangle_{r} \nabla_{\alpha} \chi_{j} \right) + \left\langle \Phi_{i} | \hat{T} | \Phi_{j} \right\rangle_{r} \chi_{j}$$

$$\left\langle \Phi_{i} | \hat{T} | \chi_{j} \Phi_{j} \right\rangle_{r} = \delta_{ij} \hat{T} \chi_{j} - \left(\sum_{\alpha} \frac{\hbar^{2}}{M_{\alpha}} \left\langle \Phi_{i} | \nabla_{\alpha} \Phi_{j} \right\rangle_{r} \nabla_{\alpha} \chi_{j} \right) + \left\langle \Phi_{i} | \hat{T} | \Phi_{j} \right\rangle_{r} \chi_{j}$$

 $\left\langle \Phi_i \middle| \widehat{H}_{nucl} \middle| \chi_j \Phi_j \right\rangle_r = \left\langle \Phi_i \middle| \widehat{H}_{nucl} \middle| \Phi_j \right\rangle_r \chi_j = \left\langle \Phi_i \middle| E_j(\mathbf{R}) \middle| \Phi_j \right\rangle_r \chi_j = E_j(\mathbf{R}) \left\langle \Phi_i \middle| \Phi_j \right\rangle_r \chi_j = E_j(\mathbf{R}) \delta_{ij} \chi_j$

$$\langle \Phi_i | \hat{T} + \hat{H}_{nucl} | \Psi \rangle = \sum_j \langle \Phi_i | \hat{T} + \hat{H}_{nucl} | \chi_j \Phi_j \rangle_r = \sum_j \left[\delta_{ij} \hat{T} \chi_j - \left(\sum_\alpha \frac{\hbar^2}{M_\alpha} \langle \Phi_i | \nabla_\alpha \Phi_j \rangle_r \nabla_\alpha \chi_j \right) + \left\langle \Phi_i | \hat{T} | \Phi_j \right\rangle_r \chi_j + E_j(\mathbf{R}) \delta_{ij} \right]$$

Compute the LHS: Case 1

$$\left\langle \Phi_{i} \left| \frac{\partial}{\partial t} \left| \chi_{j} \Phi_{j} \right\rangle_{r} = \left\langle \Phi_{i} \left| \Phi_{j} \right\rangle_{r} \frac{\partial}{\partial t} \chi_{j} + \left\langle \Phi_{i} \right| \frac{\partial}{\partial t} \left| \Phi_{j} \right\rangle_{r} \chi_{j} = \delta_{ij} \frac{\partial}{\partial t} \chi_{j} \right.$$
$$\left. i\hbar \left\langle \Phi_{i} \left| \frac{\partial}{\partial t} \right| \Psi \right\rangle_{r} = i\hbar \sum_{j} \left\langle \Phi_{i} \left| \frac{\partial}{\partial t} \right| \chi_{j} \Phi_{j} \right\rangle_{r} = i\hbar \sum_{j} \delta_{ij} \frac{\partial}{\partial t} \chi_{j} = i\hbar \frac{\partial}{\partial t} \chi_{i}$$

Now, combine the two parts of the equation:

$$i\hbar \frac{\partial \Psi(t, \boldsymbol{r}, \boldsymbol{R})}{\partial t} = H(t, \boldsymbol{r}, \boldsymbol{R}) \Psi(t, \boldsymbol{r}, \boldsymbol{R})$$

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}(\boldsymbol{R}) + \left\langle\Phi_{i}\middle|\hat{T}\middle|\Phi_{i}\right\rangle\right]\chi_{i} - \sum_{j,\alpha}\frac{\hbar^{2}}{M_{\alpha}}\left\langle\Phi_{i}\middle|\nabla_{\alpha}\Phi_{j}\right\rangle\nabla_{\alpha}\chi_{j} - \sum_{j\neq i,\alpha}\frac{\hbar^{2}}{2M_{\alpha}}\left\langle\Phi_{i}\middle|\nabla_{\alpha}^{2}\Phi_{j}\right\rangle\chi_{j}$$

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}(\boldsymbol{R}) + \left\langle\Phi_{i}\middle|\hat{T}\middle|\Phi_{i}\right\rangle\right]\chi_{i} - i\hbar\sum_{j,\alpha}\left\langle\Phi_{i}\middle|\nabla_{\alpha}\Phi_{j}\right\rangle\frac{(-i\hbar\nabla_{\alpha})\chi_{j}}{M_{\alpha}} - \sum_{j\neq i,\alpha}\frac{\hbar^{2}}{2M_{\alpha}}\left\langle\Phi_{i}\middle|\nabla_{\alpha}^{2}\Phi_{j}\right\rangle\chi_{j}$$

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}(\boldsymbol{R}) + \left\langle\Phi_{i}\middle|\hat{T}\middle|\Phi_{i}\right\rangle\right]\chi_{i} - i\hbar\sum_{j,\alpha}\left\langle\Phi_{i}\middle|\nabla_{\alpha}\Phi_{j}\right\rangle\frac{\hat{p}_{\alpha}\chi_{j}}{M_{\alpha}} - \sum_{j\neq i,\alpha}\frac{\hbar^{2}}{2M_{\alpha}}\left\langle\Phi_{i}\middle|\nabla_{\alpha}^{2}\Phi_{j}\right\rangle\chi_{j}$$

Nonadiabatic dynamics

This is what defines the evolution of nuclear component of the wavefunction and populations of all electronic states.

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}, \mathbf{R})$$

In the **adiabatic basis**

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}\left(\boldsymbol{R}(t)\right) + \left\langle\Phi_{i}\middle|\hat{T}\middle|\Phi_{i}\right\rangle\right]\chi_{i} - i\hbar\sum_{j,\alpha}D_{ij,\alpha}^{(1)}\frac{\hat{p}_{\alpha}\chi_{j}}{M_{\alpha}} - \sum_{j\neq i,\alpha}\frac{\hbar^{2}}{2M_{\alpha}}D_{ij,\alpha}^{(2)}\chi_{j}$$

 $D_{ij,\alpha}^{(1)} = \left\langle \Phi_i \middle| \nabla_{\!\!\alpha} \Phi_j \right\rangle$

 $D_{ii\,\alpha}^{(2)} = \left\langle \Phi_i \middle| \nabla_{\alpha}^2 \Phi_i \right\rangle$

first-order nonadiabatic couplings (NAC) - vector

(ZPE of electrons)

Diagonal BO correction to the PES!

Describes how a nuclear DOF α couples electronic state *i* and *j* This is what determines the rates of nonadiabatic transitions. second-order NAC - scalar

In the diabatic basis

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + \left\langle\Phi_{i}\right|\hat{H}_{el}\right|\Phi_{i}\right\rangle + \left\langle\Phi_{i}\right|\hat{T}\left|\Phi_{i}\right\rangle\right]\chi_{i}$$

Nuclear dynamics on state *i* is defined by the probability density: $P_i(t, \mathbf{R}) = |\langle \Phi_i | \Psi \rangle_{\mathbf{r}}|^2 = |\chi_i(t, \mathbf{R})|^2$

Population of a state *i*: $P_i(t) = |\langle \Phi_i | \Psi \rangle_{r,R}|^2 = |\chi_i(t)|^2$

$$\begin{aligned} \text{Case 2: Compute the action of } \widehat{T} \text{ on } \Psi \\ & \left(\sum_{\alpha} - \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2\right) \chi_{I} \Phi_{J} = \left(\sum_{\alpha} - \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 \chi_{J}\right) \Phi_{J} - \left(2\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha} \chi_{J}\right) + \left(\sum_{\alpha} - \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha} \chi_{J}\right) \chi_{J} \\ \widehat{T}(\chi_{J} \Phi_{J}) = (\widehat{T}\chi_{J}) \Phi_{J} \\ \text{because } \Phi \text{ is only a function of time, not } R \\ & \left(\Phi_{i} | \widehat{T} | \chi_{J} \Phi_{J} \right)_{r} = \delta_{iJ} \widehat{T}\chi_{J} \\ & \left(\Phi_{i} | \widehat{T} | \chi_{I} \Phi_{J} \right)_{r} = \left(\Phi_{i} | \Phi_{j} \right)_{r} \frac{\partial}{\partial t} \chi_{J} + \left(\Phi_{i} | \frac{\partial}{\partial t} | \Phi_{J} \right)_{r} = \sum_{J} \left[\delta_{iJ} \widehat{T} \chi_{J} + E_{J}(R) \delta_{iJ}\right] \\ \text{Compute the LHS} \\ & \left(\Phi_{i} | \frac{\partial}{\partial t} | \chi_{I} \Phi_{j} \right) = \left(\Phi_{i} | \Phi_{j} \right)_{r} \frac{\partial}{\partial t} \chi_{I} + \left(\Phi_{i} | \frac{\partial}{\partial t} | \Phi_{j} \right) \chi_{I} = \delta_{iJ} \frac{\partial}{\partial t} \chi_{I} + \left(\Phi_{i} | \frac{\partial}{\partial t} | \Phi_{j} \right) \chi_{I} \\ & \left(\hbar \left(\Phi_{i} | \frac{\partial}{\partial t} | \Psi_{r}\right) = i\hbar \sum_{J} \left\langle\Phi_{i} | \frac{\partial}{\partial t} | \chi_{I} \Phi_{i} \right\rangle_{r} = i\hbar \sum_{J} \delta_{iJ} \frac{\partial}{\partial t} \chi_{J} + i\hbar \sum_{J} \left\langle\Phi_{i} | \frac{\partial}{\partial t} | \Phi_{j} \right) \chi_{I} \\ & \left(\hbar \left(\frac{\partial}{\partial t} | \Psi_{r}\right) = i\hbar \sum_{J} \left\langle\Phi_{i} | \frac{\partial}{\partial t} | \Psi_{r} \right) = i\hbar \sum_{J} \left\langle\Phi_{i} | \frac{\partial}{\partial t} | \Phi_{j} \right\rangle_{X} \\ & \left(\frac{\hbar}{\partial t} | \Phi_{j} \right) = \sum_{J,\alpha} \left\langle\Phi_{i} | \frac{\partial}{\partial R_{\alpha}} | \Phi_{j} \right) \frac{\partial R_{\alpha}}{\partial t} = \sum_{J,\alpha} D_{IJ,\alpha}^{(1)} \frac{P_{\alpha}}{M_{\alpha}} \\ & \text{This terms appears because } \Phi \text{ is an implicit function of time, via } R(t) \end{aligned}$$

Summary

Example 1: BO with quantum nuclei

Example 2: BO with wavepacket-dressed trajectories

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R})$$

$$\Psi(t, \mathbf{r}, \mathbf{R}) = \sum_{i} \chi_{i}(t, \mathbf{R}) \Phi_{i}(\mathbf{r}; \mathbf{R}(t))$$

Nonadiabatic, adiabatic basis

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}\left(\boldsymbol{R}(t)\right) + \left\langle\Phi_{i}\middle|\hat{T}\middle|\Phi_{i}\right\rangle\right]\chi_{i} - i\hbar\sum_{j,\alpha}D_{ij,\alpha}^{(1)}\frac{\hat{p}_{\alpha}\chi_{j}}{M_{\alpha}} - \sum_{j\neq i,\alpha}\frac{\hbar^{2}}{2M_{\alpha}}D_{ij,\alpha}^{(2)}\chi_{j}$$

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + E_{i}\left(\boldsymbol{R}(t)\right)\right]\chi_{i} - i\hbar\sum_{j,\alpha}D_{ij,\alpha}^{(1)}\frac{\boldsymbol{P}_{\alpha}}{M_{\alpha}}\chi_{j}$$

 $i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + \left\langle\Phi_{i}\right|\hat{H}_{el}\right|\Phi_{i}\right\rangle + \left\langle\Phi_{i}\right|\hat{T}\left|\Phi_{i}\right\rangle\right]\chi_{i}$

Nonadiabatic, diabatic basis

$$i\hbar\frac{\partial}{\partial t}\chi_{i} = \left[\hat{T} + \left\langle\Phi_{i}\right|\hat{H}_{el}\left|\Phi_{i}\right\rangle\right]\chi_{i}$$

 $i\hbar\frac{\partial}{\partial t}\chi = \left[\hat{T} + E_i(\boldsymbol{R}(t)) + \langle \Phi_i | \hat{T} | \Phi_i \rangle\right]\chi$

Adiabatic, adiabatic basis

$$i\hbar\frac{\partial}{\partial t}\chi = \left[\hat{T} + E_i(\boldsymbol{R}(t))\right]\chi$$

 $i\hbar\frac{\partial}{\partial t}\chi = \left[\hat{T} + \left\langle\Phi_{i}\right|\hat{H}_{el}\right|\Phi_{i}\right\rangle + \left\langle\Phi_{i}\right|\hat{T}\left|\Phi_{i}\right\rangle\right]\chi$

Adiabatic, diabatic basis

 $i\hbar\frac{\partial}{\partial t}\chi = [\hat{T} + \langle \Phi_i | \hat{H}_{el} | \Phi_i \rangle]\chi$