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TSH in the nutshell
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Integrators and Local Diabatization



Options for the Dynamics: TD-SE and Hamiltonian 95

dyn_control_params

rep_tdse

ham_update_method

ham_transform_method

To be implemented

hvib_update_method
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how to evolve electronic DOFs: 0 - Cyi4; [1 - Chail; 2 - Paia; 3 - Paai

how to update Ham:
-0—-don’t;
- [1 —update Hy;,]; - calls an external Python function that computes this matrix;
common choice for model Hamiltonians
- 2 —update H,4; - the Python function directly gives this matrix, we may not have the
diabatic properties in this case; suitable for the atomistic on-the-fly
NA-MD calculations or NBRA NA-MD calculations

how to update Ham via transformation :
0 —don’t, so one doesn’t override the adiabatic properties read from the files; typical
for the atomistic workflows (e.g. with the ham_update_method == 2)
[1 - compute H,4; from Hy;, by solving H,;,U = SUH4;] (common for model problems)

How to update Hvib,dia and Hy;ip qa;
- 0: don't update them, e.g. if it is read externally — useful for NBRA workflows
- [1]: update according to regular formula: Hy;p, rep = Hyrep — ihdjrep



G5

Trivial Crossing Problem .

Shakiba, M.; Akimov, A. V. Theor Chem Acc 2023, 142 (8), 68. Thesw=Rlventyorliew Tk
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Formal solution:

At -
T .
|W(t+ At)) = [ dt exp (‘ %H(t + T))] W () = [Paqi(t + At))Cpqi(t + A)  Consider the
° change of C,4;
After projection: At i non-ad.iabatic
Caai(t +AL) = <¢adi (t + At)| U dt exp (— %I’-I\(t + r))] 1Y 4ai (©)Cagi(t) dynamics
0

However, the bases | ,4;(t)) and | ,4;(t + At)) may change their relative order (e.g. in trivial crossing situations) or
acquire a spurious phase difference. Consider this as the adiabatic dynamics (e.g. adiabatic charge transfer)



Trivial Crossing Problem b=
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Arises because of finite At or due to inconsistency of energy and NAC (due to approximations)

Adiabatic |1)

Diabatic |1) Diabatic |0)

Diabatic |0) Diabatic |1)

Adiabatic |0)

Not accounting for state tracking can result in — unphysical long-distance charge transfer (e.g. bad carrier mobilities)
Giannini, S.; Carof, A.; Blumberger, J. JPCL 2018, 9, 3116—-3123; Bai, X.; Qiu, J.; Wang, L. JCP 2018, 148, 104106.



Local Diabatization (LD) Approach =
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Introduce the dynamically-consistent (local diabatic) basis, |17)adl-(t)): (&adi(t)lﬁadi(t + At)) ~ |
The idea: these basis functions preserve their identity as much as possible

. N Closely related to the one in the LD of
Introduce the basis re-projection

matrix, T'(t): it describes the |{I;adi(t)> = | aqi ()T (2) Granucci et al. )
I'=Tp

adiabatic dynamics of the basis
Granucci G, Persico M, Toniolo A J. Chem. Phys. 2001, 114, 10608

The wavefunction should stay (W (1)) = [Waai(®))Caai(®) = [Paq;(£))Caai(®)
invariant w.r.t. the choice of the basis: -
Caai(t) = T(t)Cqq;(t)

Use the definitions above: TT) W)Yt + A))T(t + At) = TT()P(t + A)T(t + At) = |
Time-overlap (transition density matrix):  p(¢, t + At) = (P ()| (t + At))
Solving for the re-projection matrix: T(t+At) = [TT(¢)P(t, t + A)]™"  but this leads to fast accumulation of errors

so, should not evolve the re-projection matrix globally, only locally:

o . I'(t) =1
Local diabatization assumption T(t + At) = P71(t, t + Ab)




Lowdin normalization in the LD approach }P,,,,
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— -1
However, this transformation will not T(t+At) = [P(t'f + At)]
preserve the wavefunction norm: [Paai(t + A)) = [Paqi(t + AT (¢ + At)

Trl((t + AD) [P (t + AD))] = Tr[(T~ (P (t + AD) [P(t + AD))T ] =
Tr[(P(t + AD)|P(t + AT H(T Y] = Tr[(Y(t + AD)|P(t + AD))TH(TH) 1] =
Tr[(P(t + AD)|P(t + ADNTTT) ] = Tr[((t + AD) [P(t + AD))].

Normalize the T matrix: T = T = TA suchthat TT(t + AT (t + At) = ATTY(t + ATt + At)A =1

The matrix A can be chosen as: A = (T*+(t + At)T (¢t + At))_l/2

So the normalized matrix is: T(t + At) = T(t + At)(T+(t + AD)T(t + At))_l/2
Local diabatization with Lowdi I =1
ocal dlabatization with Lowdin T(t + At) = P~L(t, t + A)([PL(L, t + AD)]TPL(¢, t + At))~1/2
normalization
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Back to Integrating the TD-SE ——_
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At iT
U(t,t + At) = <1padi (t + At)| U dt exp <_Eﬁ(t + T))] [ 4 (D)
0

At it iAt _
Crude splitting: U dt exp (— ﬁH(T))] ~ [exp (— o [H(t) + H(t + At)]) ~ [exp (— — H(t + At))] [exp (— — H(t))]
0

IAt [ IAt
U(t,t +At) = <1/)adl- (t + At)| [exp <_§H(t + At))] exp <_ﬁﬁ(t)>] [P ,4; (D)

Paai (1)) <17)adi (t + At)| ~ ]

ipadi(t + At)) <ipadi (t)| =~

U(t,t + At) = (Pgq;(t + At)| [exp (—ij—;ﬁ(t + At )] Vaqi(t + AN q; (O |fexp (_‘A_tg(t)>] () = (o (£ +
‘ )] [P ,q: (D)) = A(t + AT (t + At) A(t)

AD)| [exp (— A+ At))] Waai(t + AOIT(t + At RGeS0

Using properties of the local-diabatic basis:

iAt Note: this should be
A(t) = 1padl (t)| [exp (— —H(t))] [P ,q0: (D)) = exp (— ﬁH(t)> G — the electronic

Hamiltonian, not the
vibronic Hamiltonian!



Back to Integrating the TD-SE: Another integrator . I]é
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Symmetric splitting: U(t,t+ At) = <1/)adi (t + At)| [exp <— ﬁ H(t))] [exp (— AH(t + At))] [exp (— —H(t))] L E)

4h 2h
[ aaqi(t + AD)) l’/vlowu' (t)

eXPp (- e H(ﬂ)] [$aai(D)

U(t,t + At)

= <¢adi (t + At

At ~ _ At _. _
[exp <_4_hH(t)> 0) <¢adi (t + At)| exp (‘ Z_hH(t + At ] [P aai (t

+80) (Paa: ()|

U(t,t + At)
= <1/’adi (t + At)| [P aqi(t + AT (t + AT (t) <¢adi (t)l lexp (— —H(t)>] [Yaai OIT T (¢

At
+ At) <¢adi (t+ At)| [exp <— %H(t + At))] [P aqi(t + AT (t + AT (L) <1/Jadi (t)| [exp <— —H(t)>] 9241 (D)
=T+ A)B)TH(t + A)A(t + A)T(t + At)B(t)

iAt
B(t) = ‘/’adz ®| [exp <— — 1 (t))] ¥aai (1)) = exp <— 4—hH(t)> = AL/



Rotation-based Integrators for TD-SE . Ié
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iha = XC Xij = Re[Xij] + iIm[Xl-j] C(t + At) = exp(iLAt)C(t).
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Rotation-based Integrators for TD-SE: Action of the operators ety a¢ Distate
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exp (lLEl)At) Ci = exp <—iATtXii> Ci A= Im();l])At B = Re();l])At
A2 A4 3
_ _ _ 2 ,_ 3,/ 4 l-——=+—.. A——+-- _ : _
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Rotation-based Integrators for TD-SE: Overall Factorization B
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At
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Working the Liouville’s space: propagation of density matrix

ap .
h— = |H,p
‘ Vectorized form of the QCLE
0Py _ i _ Lijap = HigOpj — Hpj0q; avec(p)

. LijabPab = —iL * vec(p)

) \ h H = (|H[$) = T*(|H[$)T / \

N X N matrix N? X N2 matrix N2 x 1 vector

For the “closed” quantum systems, there is a direct correspondence between wavefunction and density matrix, so:

Padi = CaaiCagi = TCaaiCayiT = TPaaiTY Padi =T paai(TH) ™ =T paaiT

At

: , IT -
So, the final expression: p(t + At) = T(t + At)vec™ {U dt exp <— ﬁL(t + T))] vec(p(t))T} T*(t + At)
0




Overview of Electronic Integrators }.:,'é,,
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dyn_control_params

- electronic_integrator

rep_tdse = 0 (diabatic): rep_tdse = 1 (adiabatic): rep_tdse = 2 ( diabatic, density matrix formalism):
-1 - No propagation 0 - mid-point Hvib with the second-point correction of Hvib
-1 - No propagation 0 - LD, with crude splitting, with exp_ [ default ]
0 - Lowdin exp_ with 2-point 1 - LD, with symmetric splitting, with exp_
Hvib dia B 2 - LD, original, with exp_
1 - based on QTAG propagator 3 - 1-point, Hvib integration, with exp_ rep_tdse = 3 ( adiabatic, density matrix formalism):
2 - based on modified QTAG 4 - 2-points, Hvib integration, with exp_
propagator (Z at two times) 5 ) 3-pointsf Hvib, in'Fegra.tion with the second- 0 - mid-point Hvib with the second-point correction of Hvib
3 - non-Hermitian integrator with 2- Point correction of Hvib, with exp_ 1 - Zhu Liouvillian
point Hvib_dia 6 - same as 4, but without projection matrices
(T_new =1) 10 - same as 0, but with rotations

10 - same as 0, but with rotations
11 - same as 1, but with rotations
12 - same as 2, but with rotations
13 - same as 3, but with rotations
14 - same as 4, but with rotations
15 - same as 5, but with rotations
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Additional flags for the Integrators

dyn_control_params If set to True (1), we will force the reprojection matrix T_new to be the identity matrix. This
- assume_always_consistent  effectively removes basis-reprojection (local diabatization) approach and turns on the
"naive" approach where no trivial crossings exist.

- [0]: No - we do want to use the LD approaches by default.
- 1: Yes - one may need to turn on additional state tracking and phase correction methods

- ampl_transformation_method Whether transform the amplitudes by the T transformation matrix
- 0: do not transform by the T matrix (naive, but potentially correct approach)
- 1: do transform it (as in LD, but maybe not needed if we directly transform basis)
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