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Conventional mixed quantum-classical (MQC) methods



Effective potential energy surfaces in the MQC methods

● In the mixed quantum-classical methods, nuclear and electronic degrees of freedom (DOF) 

are described separately: electrons are treated as quantum particles, and nuclei are 

approximated to classical particles.

● The simplest form of the MQC approach is the Born-Oppenheimer molecular dynamics 

(BOMD) – molecular dynamics on the single potential energy surface (PES).

𝑹

𝜒 𝑅, 𝑡 2

The classical ensemble of the particle reflects on 

the quantum nuclear distribution.

Ψ 𝒓, 𝑹, 𝑡 ≈ 𝜒𝑖 𝑹, 𝑡 Φ𝑖(𝒓; 𝑹(𝑡))

𝑀𝜈
ሷ𝑅𝜈 𝑡 = −∇𝜈𝐸𝑖(𝑹)

{
𝐻𝐵𝑂Φ𝑖 𝒓; 𝑹(𝑡) = 𝐸𝑖(𝑹)Φ𝑖 𝒓; 𝑹(𝑡)



Effective potential energy surfaces in the MQC methods

● Then how do we set the proper potential energies in the nonadiabatic regime?

Surface hopping Ehrenfest

𝑹 𝑹

Stochastically determined adiabatic force Mean-field force

 intuitively correct but discontinuous PES  unphysical pathway and wrong branching ratio



Decoherence correction in the MQC methods

● “Overcoherence” problem: the decoherence is missing in the original electronic TDSE.

𝑹

ሶ𝐶𝑖 = −
𝑖

ℏ
𝐸𝑖𝐶𝑖 − 

𝑗

𝐶𝑗 

𝜈

ሶ𝑅𝜈 ⋅ 𝑑𝑖𝑗,𝜈

The population exchange only occurs when 

the nonadiabatic coupling (NAC) is finite.

The first term only change the phase of the 

adiabatic coefficient.

Without the decoherence correction, 

there could be long-lasting coherence. 
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Effective potential energy surfaces in the MQC methods

● To resolve this overcoherence problem, various decoherence-corrected methods have been 

developed. The decoherence correction has various types, which correct the electronic TDSE 

directly or decoherence times.

Simplified Decay of Mixing (SDM)

A-FSSH

Instantaneous Decoherence Approximation (IDA)

Mean-field dynamics with stochastic decoherence (MFSD)

Decoherence-Induced Surface Hopping (DISH)

𝜏𝑖𝑎 = −
ℏ

𝐸𝑖 − 𝐸𝑎
1 +

𝐶

𝐸𝑘𝑖𝑛
𝐶𝑖

Granucci, G.; Persico, M. JCP. 2007, 126 (13), 134114.

𝐶𝑖≠𝑎: = 𝐶𝑖≠𝑎 exp −
Δ𝑡

𝑡𝑖𝑎

Jain, A.; Alguire, E.; Subotnik, J. E. JCTC. 2016, 

12 (11), 5256–5268.
𝜏𝑖𝑗

−1 =
𝛿𝑭𝑖𝑖 ⋅ 𝛿𝑹𝑖𝑖 − 𝛿𝑹𝑗𝑗

2ℏ
−

2 𝒅𝑗𝑖 ⋅ 𝐸𝑗 − 𝐸𝑖 𝛿𝑹𝑖𝑖 − 𝛿𝑹𝑗𝑗 ⋅ 𝒗

ℏ𝒗 ⋅ 𝒗

Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. JCP. 2013, 138 (22), 224111.

Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. JCP. 2005, 123 (23), 234106.

𝜏𝑖
−2 = 

𝜈

𝑭𝜈 0 − 𝑭𝑖,𝜈
2

4𝑎𝜈ℏ2

𝜏𝑖
−1 = 

𝑗≠𝑖

𝐶𝑗
2

𝑟𝑖𝑗

Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. JCP. 2012, 137 (22), 22A545.



The exact factorization (XF) formalism 

& 

its MQC variation



XF ansatz

● Molecular wave function is factored into the nuclear and electronic wave functions (WFCs).

● The probability amplitude 𝜒 2 stands for the exact time-dependent nuclear density.  

Ψ 𝒓, 𝑹, 𝑡 = 𝜒 𝑹, 𝑡 Φ𝑹(𝒓, 𝑡) ∀𝑹 න Φ𝑹 𝒓, 𝑡 2 𝑑𝒓 = 1 Partial Normalization Condition

Ψ 𝒓, 𝑹, 𝑡 2𝑑𝒓𝑑𝑹 = 𝜒 𝑹, 𝑡 2𝑑𝑹 × Φ𝑹 𝒓, 𝑡 2𝑑𝒓

Total probability Marginal probability 

for 𝑹
Conditional probability 

for 𝒓 under 𝑹

𝜒 𝑹, 𝑡 2 = 

𝑖

∞

𝜒𝑖 𝑹, 𝑡 2 Ψ 𝒓, 𝑹, 𝑡 = 

𝑖

∞

𝜒𝑖 𝑹, 𝑡 Φ𝑖(𝒓; 𝑹(𝑡))

cf. Born-Huang expansion

Abedi, A.; Maitra, N. T.; Gross, E. K. U. JCP 2012, 137 (22), 22A530.

Abedi, A.; Maitra, N. T.; Gross, E. K. U. PRL 2010, 105 (12), 123002.



XF ansatz

● Coupled XF equations

𝑖ℏ𝜕𝑡𝜒 𝑹, 𝑡 = 

𝜈

−𝑖ℏ∇𝜈 + 𝐴𝜈 𝑹, 𝑡 2

2𝑀𝜈
+ 𝜖 𝑹, 𝑡 𝜒(𝑹, 𝑡)

𝑖ℏ𝜕𝑡Φ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 + 𝑈𝑒𝑛
𝑐𝑜𝑢𝑝

Φ𝑹, 𝜒 − 𝜖(𝑹, 𝑡) Φ𝑹(𝑹, 𝑡)

Time-dependent (TD) PES

𝜖 𝑹, 𝑡 = Φ𝑹 𝑡 𝐻𝐵𝑂 + 𝑈𝑒𝑛
𝑐𝑜𝑢𝑝

− 𝑖ℏ𝜕𝑡 Φ𝑹 𝑡
𝒓

TD vector potential

𝐴𝜈 𝑹, 𝑡 = Φ𝑹 𝑡 | − 𝑖ℏ∇𝜈Φ𝑹 𝑡 𝒓

Electron-nuclear correlation operator

𝑈𝑒𝑛
𝑐𝑜𝑢𝑝

Φ𝑹, 𝜒 = 

𝜈

1

𝑀𝜈

−𝑖ℏ∇𝜈 − 𝐴𝜈 𝑹, 𝑡 2

2
+

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈(𝑹, 𝑡) ⋅ −𝑖ℏ∇𝜈 − 𝐴𝜈(𝑹, 𝑡)

{

Leading to Diagonal BO correction Major electron-nuclear correlation

Abedi, A.; Maitra, N. T.; Gross, E. K. U. JCP. 2012, 137 (22), 22A530.

Abedi, A.; Maitra, N. T.; Gross, E. K. U. PRL. 2010, 105 (12), 123002.



Towards the MQC equations

● Inserting the polar form of nuclear WFC, 𝜒 𝑅, 𝑡 = 𝜒 𝑹, 𝑡 exp
𝑖

ℏ
𝑆 𝑹, 𝑡 , into the nuclear 

TDSE:

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL. 2015, 115 (7), 073001.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC. 2016, 12 (5), 2127–2143.

𝜕𝑡𝑆 𝑹, 𝑡 = − 

𝜈

∇𝜈𝑆 𝑹, 𝑡 + 𝐴𝜈 𝑹, 𝑡 2

2𝑀𝜈
− 𝜖 𝑹, 𝑡 + ℏ2 

𝜈

1

2𝑀𝜈

∇𝜈
2|𝜒(𝑹, 𝑡)|

|𝜒(𝑹, 𝑡)|

𝜕𝑡 𝜒(𝑹, 𝑡) 2 = 

𝜈

−
1

𝑀𝜈
∇𝜈 ⋅ ∇𝜈𝑆 𝑹, 𝑡 + 𝑨𝜈 𝑹, 𝑡 𝜒 𝑹, 𝑡 2

Real part

Imaginary part

Quantum Hamilton-Jacobi equation

Continuity equation → Throw away 

    (Within MQC, we assume its solution, i.e., a delta function).

cf. Hamilton-Jacobi equation

𝜕𝑡𝑆 + 𝐻 𝑹, 𝛁𝑹𝑆, 𝑡 = 0



Towards the MQC equations

● Identifying the classical momentum: 𝑃𝜈 = ∇𝜈𝑆 + 𝐴𝜈 by neglecting the quantum potential.

Applying ∇𝜇

𝜕𝑡𝑆 𝑹, 𝑡 ≈ − 

𝜈

∇𝜈𝑆 𝑹, 𝑡 + 𝐴𝜈 𝑹, 𝑡 2

2𝑀𝜈
− 𝜖 𝑹, 𝑡

ሶ𝑆 𝑹, 𝑡 = − 

𝜈

∇𝜈𝑆 𝑹, 𝑡 + 𝐴𝜈 𝑹, 𝑡 2

2𝑀𝜈
−

𝑃𝜈

𝑀𝜈
⋅ ∇𝜈𝑆(𝑹, 𝑡) − 𝜖 𝑹, 𝑡 In the Lagrangian frame

= − 

𝜈

𝑃𝜈
2

2𝑀𝜈
−

𝑃𝜈

𝑀𝜈
⋅ 𝑃𝜈 − 𝐴𝜈 − 𝜖 𝑹, 𝑡 = − − 

𝜈

𝑃𝜈
2

2𝑀𝜈
+ 𝜖 𝑹, 𝑡 + 

𝜈

𝐴𝜈 ⋅
𝑃𝜈

𝑀𝜈

∇𝜇
𝑑

𝑑𝑡
𝑆 =

𝑑

𝑑𝑡
∇𝜇𝑆 = ሶ𝑃𝜇 − ሶ𝐴𝜇 = −∇𝜇 𝜖 𝑹, 𝑡 + σ𝜈 𝐴𝜈 ⋅

𝑃𝜈

𝑀𝜈
≔ 0 (by setting the Gauge condition)

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL 2015, 115 (7), 073001.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC 2016, 12 (5), 2127–2143.

∴ ሶ𝑃𝜇 = ሶ𝐴𝜇 under 𝜖 𝑹, 𝑡 + σ𝜈 𝐴𝜈 ⋅
𝑃𝜈

𝑀𝜈
= 0



Towards the MQC equations

● Approximation to the electronic TDSE

𝑖ℏ𝜕𝑡Φ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 + 𝑈𝑒𝑛
𝑐𝑜𝑢𝑝

Φ𝑹, 𝜒 − 𝜖(𝑹, 𝑡) 𝜒(𝑹, 𝑡)

𝑈𝑒𝑛
𝑐𝑜𝑢𝑝

Φ𝑹, 𝜒 ≈ 

𝜈

1

𝑀𝜈

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈(𝑹, 𝑡) ⋅ −𝑖ℏ∇𝜈 − 𝐴𝜈(𝑹, 𝑡)

Neglecting the 2nd order terms generating the DBOC contribution

𝑖ℏ ሶΦ𝑹 𝒓, 𝑡 − 𝑖ℏ 

𝜈

𝑃𝜈

𝑀𝜈
⋅ ∇𝜈Φ𝑹 𝒓, 𝑡

= 𝐻𝐵𝑂 𝑟, 𝑹 + 

𝜈

1

𝑀𝜈

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈 𝑹, 𝑡 ⋅ −𝑖ℏ∇𝜈 − 𝐴𝜈 𝑹, 𝑡 − 𝜖 𝑹, 𝑡 Φ𝑹(𝒓, 𝑡)

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL 2015, 115 (7), 073001.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC 2016, 12 (5), 2127–2143.



Towards the MQC equations

● Approximation to the electronic TDSE

𝑖ℏ ሶΦ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 + 

𝜈

1

𝑀𝜈

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈 𝑹, 𝑡 − 𝑃𝜈 ⋅ −𝑖ℏ∇𝜈 Φ𝑹 𝒓, 𝑡

− 

𝜈

1

𝑀𝜈

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈 𝑹, 𝑡 ⋅ 𝐴𝜈 𝑹, 𝑡 + 𝜖(𝑹, 𝑡) Φ𝑹 𝒓, 𝑡

−𝑖ℏ∇𝜈𝜒

𝜒
+ 𝐴𝜈 𝑹, 𝑡 = ∇𝜈𝑆 + 𝐴𝜈 𝑹, 𝑡 − 𝑖ℏ

∇𝜈 𝜒 𝑹, 𝑡

𝜒 𝑹, 𝑡
= 𝑃𝜈 + 𝒫𝜈

Utilizing the polar form

𝑖ℏ ሶΦ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 + 

𝜈

𝒫𝜈

𝑀𝜈
⋅ −𝑖ℏ∇𝜈 Φ𝑹 𝒓, 𝑡

− 

𝜈

𝒫𝜈

𝑀𝜈
⋅ 𝐴𝜈 𝑹, 𝑡 + 

𝜈

𝑃𝜈

𝑀𝜈
⋅ 𝐴𝜈 𝑹, 𝑡 + 𝜖(𝑹, 𝑡) Φ𝑹 𝒓, 𝑡

≡ 0 (The Gauge condition)

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL 2015, 115 (7), 073001.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC 2016, 12 (5), 2127–2143.

𝒫𝜈 = −𝑖ℏ
∇𝜈 𝜒 𝑹, 𝑡

𝜒 𝑹, 𝑡

Quantum momentum

𝑖ℏ ሶΦ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 − 

𝜈

𝒫𝜈

𝑀𝜈
⋅ 𝐴𝜈 𝑹, 𝑡 + 𝑖ℏ∇𝜈 Φ𝑹 𝒓, 𝑡



Towards the MQC equations

● The XFMQC equations

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL 2015, 115 (7), 073001.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC 2016, 12 (5), 2127–2143.

𝑖ℏ ሶΦ𝑹 𝒓, 𝑡 = 𝐻𝐵𝑂 𝑟, 𝑹 − 

𝜈

𝒫𝜈

𝑀𝜈
⋅ 𝐴𝜈 𝑹, 𝑡 + 𝑖ℏ∇𝜈 Φ𝑹 𝒓, 𝑡

𝑭𝜈 = − Φ𝑹 𝑡 ∇𝜈𝐻𝐵𝑂 Φ𝑹 𝑡 𝒓 + 

𝜇

2𝑖𝒫𝜇

ℏ𝑀𝜇
⋅ 𝐴𝜇 𝑹, 𝑡 𝐴𝜈 𝑹, 𝑡 − ℏ2 ∇𝜇Φ𝑹 𝑡 ∇𝜈Φ𝑹 𝑡

𝒓

Beyond the conventional Ehrenfest terms, the resulting coupled TDSEs explicitly contain the electron-

nuclear correlation terms arising from the XF formalism, without adding any ad hoc decoherence 

correction.



Coupled-trajectory MQC approach 

(CTMQC)



Coupled trajectory method (CTMQC)

● The quantum momentum calculation

Min, S. K.; Agostini, F.; Tavernelli, I.; Gross, E. K. U. JPCL. 2017, 8 (13), 3048–3055.

𝜒𝐽 𝑡 2 =
1

𝑁𝑡𝑟


𝐾

𝑁𝑡𝑟

ෑ

𝜈

𝑔𝜎𝜈
𝐾 𝑡 (𝑅𝜈

𝐽
− 𝑅𝜈

𝐾(𝑡))

Thus, the quantum momentum of each trajectory becomes a linear function constructed by 

the slope and y-intercept, which are computed through the trajectory ensemble.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC. 2016, 12 (5), 2127–2143.

−𝑖𝒫𝜈
𝐽

= −ℏ
∇𝜈 𝜒𝐽

𝜒𝐽
= −ℏ

∇𝜈 𝜒𝐽 2

2 𝜒𝐽 2

𝒫𝜈
𝐽

𝑡 = 

𝐾

𝑁𝑡𝑟

𝑊𝜈
𝐽𝐾

𝑡 (𝑅𝜈
𝐽
(𝑡) − 𝑅𝜈

𝐾(𝑡))

= 𝛼𝜈
𝐽

𝑡 𝑅𝜈
𝐽

𝑡 − 𝑅0𝜈
𝐽

(𝑡)

𝑊𝜈
𝐽𝐾

=
ℏ ς𝜇 𝑔𝜎𝜇

𝐾 𝑡 (𝑅𝜇
𝐽

𝑡 − 𝑅𝜇
𝐾 𝑡 )

2𝜎𝜈
𝐾,2 𝑡 σ𝑀 ς𝜇 𝑔𝜎𝜇

𝑀 𝑡 (𝑅𝜇
𝐽

𝑡 − 𝑅𝜇
𝑀 𝑡 )

The nuclear density is reproduced by the ensemble of trajectories {𝑹𝐽 𝑡 , 𝑷𝐽(𝑡)}. It is expressed as 

Gaussian functions {𝑔
𝜎𝜈

𝐽
𝑡

} to express the quantum momentum analytically.



Coupled trajectory method (CTMQC)

● TD vector potential calculation

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC. 2016, 12 (5), 2127–2143.

𝐶𝑖
𝐽

= 𝐶𝑖
𝐽

exp
𝑖

ℏ
𝜃𝑖

𝐽
∇𝜈𝐶𝑖

𝐽
=

∇𝜈|𝐶𝑖
𝐽
|

|𝐶𝑖
𝐽
|

+
𝑖

ℏ
𝜃𝑖

𝐽
𝐶𝑖

𝐽
≈

𝑖

ℏ
𝜃𝑖

𝐽
𝐶𝑖

𝐽
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𝐽 ≈ 0 in most of the region

Agostini, F.; Abedi, A.; Suzuki, Y.; Min, S. K.; Maitra, N. T.; Gross, E. K. U. JCP. 2015, 142 (8), 084303.
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= − න
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In order to compute the TD vector potential, spatial derivative of the coefficients needs to be 

approximated.
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𝑖
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𝜌𝑖𝑗
𝐽
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𝐽
𝐶𝑗

∗𝐽

cf. adiabatic density matrix



Coupled trajectory method (CTMQC)

● Equations of motion (EOMs)

● The electron-nuclear correlation beyond the Ehrenfest terms naturally appear in electronic and 

nuclear EOMs.

● With the predefined trajectories, electronic and nuclear evolutions are conducted simultaneously. 

Through the quantum momentum, each trajectory is “connected”.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC. 2016, 12 (5), 2127–2143.
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Coupled trajectory method (CTMQC)

● New electron-nuclear correlation compared to Ehrenfest/Surface hopping dynamics

● A swarm of trajectories are propagated to construct nuclear quantum momentum

● The phase gradients from adiabatic forces

● Wavepacket splitting and (de)coherence are properly captured in the model Hamiltonian simulations.

Min, S. K.; Agostini, F.; Gross, E. K. U. PRL 2015, 115 (7), 073001.



Coupled trajectory method (CTMQC)

● Applications to the molecular systems

Photochemistry of Oxirane; excited-state calculation 

with LR-TDDFT

Min, S. K.; Agostini, F.; Tavernelli, I.; Gross, E. K. U. JPCL. 2017, 8 (13), 3048–3055.



Coupled trajectory method (CTMQC)

● More works…

Arribas, E. V.; Ibele, L. M.; Lauvergnat, D.; Maitra, N. T.; Agostini, F. JCTC. 2023, 

19 (21), 7787–7800.

Energy conservation through modifying the phase gradient 

calculation (CTMQC-E)
Simplified nuclear dynamics based on TSH 

(CTSH)

Pieroni, C.; Agostini, F. JCTC. 2021, 17 (10), 5969–5991.



Independent-trajectory XF methods



Necessity of the independent-trajectory algorithm

● The CTMQC algorithm is efficient, but it requires more cost than that in the 

conventional TSH method.

● Simultaneous propagation of a swarm of trajectories

● The NACV calculation for computing the decoherence force

● The stability of the CTMQC calculation is sensitive to the excited-state 

calculation in each trajectory (Excited-state calculations need to be stable for 

all trajectories).

How to define the quantum momentum in the level of independent trajectory?

How can we simplify the force so that explicit NACV calculation is not obliged?



Surface hopping based on XF (SHXF)

● Nuclear EOM: Based on the FSSH force, that is, the adiabatic force of an active state 

determined by the hopping process is employed to evolve nuclei.

● Electronic EOM: Only electronic propagation contains the decoherence term.

● To compute the quantum momentum in the independent-trajectory level, auxiliary trajectories 

are employed for each trajectory to estimate the overall nuclear wavepacket distribution.

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC. 2016, 12 (5), 2127–2143.

𝑃𝑖→𝑗 =
2ℜ(𝜌𝑖𝑗 σ𝜈

ሶ𝑅𝜈 ⋅ 𝑑𝑖𝑗,𝜈)

𝜌𝑖𝑖
 Δ𝑡

ሶ𝐶𝑖 = −
𝑖

ℏ
𝐸𝑖𝐶𝑖 − 

𝑗

𝐶𝑗 

𝜈

𝑃𝜈

𝑀𝜈
⋅ 𝑑𝑖𝑗,𝜈 + 

𝜈

𝑖𝒫𝜈

ℏ𝑀𝜈
⋅ 

𝑗

𝐶𝑗
2

𝜙𝑗𝜈 − 𝜙𝑖𝜈 𝐶𝑖



Surface hopping based on XF (SHXF)

● Auxiliary trajectory propagation

● When the coherence criterion, that is, 𝜖 < 𝐶𝑖
2 < 1 − 𝜖, are satisfied for a state, the auxiliary 

trajectory is spawned for that state.

● The initial aux. position 𝑹𝑖 is set to the real position at the spawning time 𝑡𝑖. 

𝑹𝑖 𝑡𝑖 = 𝑹(𝑡𝑖)

● The aux. momentum 𝑷𝑖 is set by rescaling 𝑷𝑖 = 𝛼𝑖𝑷 based on 

    the energy conservation.

1

2
𝑷𝑖

𝑇𝑴−1𝑷𝑖 + 𝐸𝑖 =
1

2
𝑷𝑇𝑴−1𝑷 + 𝐸

● The aux. position is propagated by the current aux. momentum.

𝑹𝑖 𝑡 + Δ𝑡 = 𝑹𝑖 𝑡 + 𝑴−1𝑷𝑖 𝑡 Δ𝑡

● When the coherence criterion is no longer satisfied, 

or a hop occurs, aux. trajectories are destroyed.

𝑹

Real trajectory

Aux. trajectory

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.



Surface hopping based on XF (SHXF)

● Quantum momentum

The nuclear density is assumed to be combination of Gaussian functions having each aux. 

position as its center.

Eventually, the sign of quantum momentum is determined by the displacement between the real 

position and average position. By this procedure, each trajectory possesses its own quantum 

momentum constructed by its auxiliary trajectories.

𝜒 2 = 

𝑖

𝜒𝑖
2 = 

𝑖

𝑁𝑖 ෑ

𝜈

exp −
𝑅𝜈 − 𝑅𝑖,𝜈

2

2𝜎𝑖,𝜈
2

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

𝒫𝜈 ≈
𝑖ℏ

2𝜎𝜈
2 𝑅 − 𝑅𝜈 ≈

𝑖ℏ

2𝜎𝜈
2 𝑅𝑎,𝜈 − 

𝑖

𝜌𝑖𝑖𝑅𝑖,𝜈



Surface hopping based on XF (SHXF)

● Phase gradient

The phase gradient is computed by the momentum difference during the coherence.

Thus, quantum momentum and phase gradient become physical quantities in terms of the 

relative position and momentum.

𝜙𝑖,𝜈 = − න
𝑡𝑖

𝑡

𝑑𝑡′ ∇𝜈𝐸𝑖 = න
𝑡𝑖

𝑡

𝑑𝑡′ 𝐹𝑖 = න
𝑡𝑖

𝑡

𝑑𝑃𝑖

𝜙𝑖,𝜈(𝑡) = 𝑃𝑖 𝑡 − 𝑃𝑖(𝑡𝑖)

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.



Surface hopping based on XF (SHXF)

● Decoherence correction through the electron-nuclear correlation term

The newly deduced electron-nuclear correlation contribution to the density is the following.

The direction of the decoherence is determined by the interplay between the relative position 

and momentum.

ሶ𝜌𝑖𝑖
𝑋𝐹 = 

𝜈

2𝑖𝒫𝜈

𝑀𝜈
⋅ 

𝑗

𝜙𝑗,𝜈 − 𝜙𝑖,𝜈 𝜌𝑗𝑗𝜌𝑖𝑖

ሶ𝜌𝑖𝑖
𝑋𝐹 = − 

𝜈

ℏ

𝑀𝜈𝜎𝜈
𝑅𝜈 − ⟨𝑅𝜈⟩ ⋅ 

𝑗

𝜙𝑗,𝜈 − 𝜙𝑖,𝜈 𝜌𝑗𝑗𝜌𝑖𝑖

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.



Surface hopping based on XF (SHXF)

● Auxiliary trajectory propagation & decoherence correction

ሶ𝜌00
𝑋𝐹 = −

ℏ

𝑀𝜎
𝑅 − ⟨𝑅⟩ ⋅ 𝜙1 − 𝜙0 𝜌11𝜌00

ሶ𝜌11
𝑋𝐹 = −

ℏ

𝑀𝜎
𝑅 − ⟨𝑅⟩ ⋅ 𝜙0 − 𝜙1 𝜌00𝜌11

Real trajectory

Aux. trajectory

< 0

< 0

> 0

The electron-nuclear correlation acts as the 

decoherence correction, increasing 𝜌11 and 

decreasing 𝜌00.

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

𝑅



Surface hopping based on XF (SHXF)

● Auxiliary trajectory propagation & decoherence correction

ሶ𝜌00
𝑋𝐹 = −

ℏ

𝑀𝜎
𝑅 − ⟨𝑅⟩ ⋅ 𝜙1 − 𝜙0 𝜌11𝜌00

ሶ𝜌11
𝑋𝐹 = −

ℏ

𝑀𝜎
𝑅 − ⟨𝑅⟩ ⋅ 𝜙0 − 𝜙1 𝜌00𝜌11

Real trajectory

Aux. trajectory

> 0

< 0

> 0

The electron-nuclear correlation acts as the 

decoherence correction, increasing 𝜌00 and 

decreasing 𝜌11.

Decoherence facilitates the population transfer 

to the active state → The active state serves 

as the pointer state!

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

Shu, Y.; Truhlar, D. G. JCTC. 2023, 19 (2), 380–395.

𝑅



Surface hopping based on XF (SHXF)

● Branching correction on the auxiliary trajectory propagation

When the dynamics encounters the classical turning point, there are some difficulties for 

defining the auxiliary momenta

𝑅

Real trajectory

Aux. trajectory

Case I. An auxiliary trajectory encounters the turning point.

𝐸𝑡𝑜𝑡

In this case, the auxiliary trajectory needs to reflect. However, 

the aux. momentum is computed by the positive scaling of the 

real momentum. Thus, a special treatment is necessary.

𝑷𝑖 = 𝛼𝑖 > 0 𝑷

Inspired by the BCSH method, one can the density of the 

auxiliary state and initialize the auxiliary project out  trajectory.

Arribas, E. V.; Vindel-Zandbergen, P.; Roy, S.; Maitra, N. T. PCCP. 2023, 25 (38), 26380–26395.

Xu, J.; Wang, L. JCP. 2019, 150 (16), 164101.



Surface hopping based on XF (SHXF)

● Branching correction on the auxiliary trajectory propagation

When the dynamics encounters the classical turning point, there are some difficulties for 

defining the auxiliary momenta

𝑅

Real trajectory

Aux. trajectory

Case II. The real trajectory encounters the turning point.

𝐸𝑡𝑜𝑡

In this case, the auxiliary trajectory would experience abrupt 

momentum reversal, which could cause a wrong 

decoherence correction.

Here, one can collapse the state to the active state. The 

criterion for the turning point is based on the BCSH turning 

point descriptor.

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.

Xu, J.; Wang, L. JCP. 2019, 150 (16), 164101.

𝑭𝑇 𝑡 + Δ𝑡 𝑷𝑖 𝑡 + Δ𝑡 ⋅ 𝑭𝑇 𝑡 + Δ𝑡 𝑷𝑖 𝑡 < 0  ⇒ turning point 



Surface hopping based on XF (SHXF)

● Independent-trajectory MQC approach based on TSH

● Proper description of multiple crossing in the NaI pump-probe experiment modeling

● Excited-state dynamics of CH2NH2
+ at ambient temperature (S2

 → S1 → S0)

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

NaI Hamiltonian

bnd. dissoc.

Photochemistry of CH2NH2
+



Surface hopping based on XF (SHXF)

● Applications to the molecular systems

Filatov, M.; Paolino, M.; Min, S. K.; Kim, K. S. JPCL. 2018, 9 (17), 4995–5001.

Photoisomerization of molecular rotors



Surface hopping based on XF (SHXF)

● More works…

Study on multistate crossing through the 

LVC model of an uracil cation with SHXF

Overall review of the independent-trajectory 

XF methods including SHXF

Vindel-Zandbergen, P.; Matsika, S.; Maitra, N. T. JPCL. 2022, 13 (7), 1785–1790.

Han, D.; Akimov, A. V. JCTC. 2024, 20 (12), 5022–5042.



Mixed quantum-classical based on XF (MQCXF)

● Recovery of the decoherence force in the independent-trajectory XF method

How about employing the decoherence force derived in the CTMQC equations as well in the 

independent-trajectory level?

However, for more reliable results, the energy conservation of the XF force needs to be 

addressed.

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.
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Mixed quantum-classical based on XF (MQCXF)

● Modified phase gradient calculation

For the energy conservation, the modified phase gradient is utilized in MQCXF.

ሶ𝐸𝑡𝑜𝑡 = 

𝜈

𝐹𝜈 ⋅ ሶ𝑅𝜈 + 

𝑖

ሶ𝜌𝑖𝑖𝐸𝑖 + 𝜌𝑖𝑖 

𝜈
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𝜈
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!

0

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.
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The energy-based phase approximation



Time-dependent Gaussian widths

● Time-dependent Gaussian width approximations

It is likely that the nuclear wavepacket width would change during the dynamics. In order to consider those 

change in the quantum momentum calculation, one may apply the time-dependent width. 

● Schwartz scheme [Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. JCP. 2005, 123 (23), 234106.]

● Subotnik scheme [Subotnik, J. E. JPCA. 2011, 115 (44), 12083–12096.]

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.

Han, D.; Akimov, A. V. JCTC. 2024, 20 (12), 5022–5042.
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Implementation of the XF methods in Libra



The XF methods in Libra

● Libra provides SHXF, MQCXF and MFXF (neglect of the XF force in MQCXF).

● Phase gradient calculation is computed by the momentum difference in SHXF, and by the energy-

based approximation in MQCXF and MFXF.

● Options for addressing the turning points in the auxiliary propagation such the branching correction 

and other heuristics.

● Various Gaussian widths approximations including the DOF-resolved width and td width such as 

Schwartz and Subotnik’s.

Han, D.; Akimov, A. V. JCTC. 2024, 20 (12), 5022–5042.

Method Electronic EOM Nuclear force Velocity rescaling after a hop Energy conservation

SHXF

𝐻𝐵𝑂 + 𝐻𝑋𝐹

Active-state 

force
Yes

Yes

MQCXF 𝐹𝑀𝐹 + 𝐹𝑋𝐹 No
MFXF 𝐹𝑀𝐹 No



The XF methods in Libra

● Electronic propagation in the local diabatization

Han, D.; Akimov, A. V. JCTC. 2024, 20 (12), 5022–5042.

𝑖ℏ Φ𝑹 𝑡 = [ 𝐻𝐵𝑂 𝑹 𝑡 + 𝐻𝑋𝐹 𝑹, 𝑡 ] Φ𝑹 𝑡

Under the XF ansatz

Ψ 𝑹, 𝑡 = 𝜒 𝑹, 𝑡 |Φ𝑹 𝑡 ⟩

𝐻𝑋𝐹 = −𝓟𝑇𝑴−1 𝑨 + 𝑖ℏ𝛁 = −𝑖ℏ𝓟𝑇𝑴−1[|𝛁Φ𝑹⟩⟨Φ𝑹| + |Φ𝑹⟩⟨𝛁Φ𝑹|] [Han, D.; Ha, J.-K.; Min, JCTC. 2023, 19 (8), 2186–2197.]

Applying the Trotter splitting approach within the generalized local diabatization scheme,

𝑪′ = 𝑼𝑋𝐹 𝑪 𝑡 ;
Δ𝑡

2
𝑪(𝑡)

𝑪′′ = 𝑻𝑼𝑀𝐹 Δ𝑡 𝑪′

𝑪(𝑡 + Δ𝑡) = 𝑼𝑋𝐹 𝑪′′;
Δ𝑡

2
𝑪′ 𝑼𝑋𝐹 𝑪 𝑡 ; Δ𝑡 = exp −𝑖

𝑯𝑋𝐹(𝑪(𝑡))

2ℏ
Δ𝑡

𝑼𝑀𝐹 Δ𝑡 = exp −𝑖
𝑯𝐵𝑂 𝑡 + 𝑻+𝑯𝐵𝑂 𝑡 + Δ𝑡 𝑻

2ℏ
Δ𝑡

Shakiba, M.; Akimov, A. V. Theor. Chem. Acc. 2023, 142 (8), 68.

Granucci, G.; Persico, M.; Toniolo, A. JCP. 2001, 114 (24), 10608–10615.



The XF methods in Libra

● Schematics and flowchart

Han, D.; Akimov, A. V. JCTC. 2024, 20 (12), 5022–5042.
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