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Light-induced phenomena & nonadiabatic dynamics

● Nonadiabatic dynamics calculations prevail in simulating various light-induced phenomena.

Exciton transfer in organic semiconductors
Sneyd, A. J. ; Fukui, T.; Paleček, D.; Prodhan, S.; Wagner, I.; Zhang, Y.; Sung, J.; Collins, S. 

M.; Slater, T. J. A.; Andaji-Garmaroudi, Z.; MacFarlane, L. R.; Garcia-Hernandez, J. D.; Wang, 

L.; Whittell, G. R.; Hodgkiss, J. M.; Chen, K.; Beljonne, D.; Manners, I.; Friend, R. H.; Rao, A. 

Sci. Adv. 2021, 7 (32), eabh4232.

Photophysics of biomolecules
Palombo, R.; Barneschi, L.; Pedraza-González, L.; Padula, D.; Schapiro, I.; Olivucci, M. 

Nat. Commun. 2022, 13 (1), 6652.



Decoherence-corrected nonadiabatic dynamics

● Various decoherence-corrected nonadiabatic dynamics methods have been developed.

Simplified Decay of Mixing (SDM)

A-FSSH

Instantaneous Decoherence Approximation (IDA)

Mean-field dynamics with stochastic decoherence (MFSD)

Decoherence-Induced Surface Hopping (DISH)
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Nonadiabatic dynamics based on exact factorization

● In the decoherence-corrected methods based on exact factorization (XF), the decoherence 

correction naturally emerges through the electron-nuclear correlation terms.
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Nonadiabatic dynamics based on exact factorization

● XF-based mixed quantum-classical (XF-MQC) equations

Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. K. U. JCTC 2016, 12 (5), 2127–2143.
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Nonadiabatic dynamics based on exact factorization

● The XF-MQC equations with the adiabatic basis expansion
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Independent-trajectory XF methods

● Approximations to the XF quantities with the auxiliary trajectories

● Aux. trajectories are generated for each adiabatic state to reflect on the overall nuclear distribution 

without using other trajectory information.

● Aux. positions are propagated by aux. momentum determined by the energy conservation and 

scaling.

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.
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Independent-trajectory XF methods

● Branching corrections in aux. propagation

When the dynamics encounter a classical turning point, the density is projected out or collapsed to 

remove wrong behaviors of aux. trajectories.

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.

Arribas, E. V.; Vindel-Zandbergen, P.; Roy, S.; Maitra, N. T. PCCP. 2023, 25 (38), 26380–26395.

Case I. An auxiliary trajectory encounters the turning point.

𝑅

Real trajectory
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𝐸𝑡𝑜𝑡

Case II. The real trajectory encounters the turning point.

𝑅

Real trajectory

Aux. trajectory

𝐸𝑡𝑜𝑡

Project out the auxiliary density Collapse the state to the active state.

These turning points could cause a jump in the total energy in mean-field based XF methods when processing 

the density matrix. 



Independent-trajectory XF methods

● According to the approximation levels in the EOMs, the independent-trajectory XF methods 

are classified.

● In SHXF (Surface Hopping based on XF), the electronic EOM is kept, while the nuclear evolution is 

simplified in the FSSH manner.

● In MQCXF (Mixed Quantum-Classical based on XF), all XF terms are kept.

● MFXF is the approximated version of MQCXF, neglecting the decoherence force.

Method Electronic EOM Nuclear force Velocity rescaling after a hop Energy conservation

SHXF

𝐻𝐵𝑂 + 𝐻𝑋𝐹

Active-state 

force
Yes

Yes

MQCXF 𝐹𝑀𝐹 + 𝐹𝑋𝐹 No
MFXF 𝐹𝑀𝐹 No

Ha, J.-K.; Lee, I. S.; Min, S. K. JPCL. 2018, 9 (5), 1097–1104.

Ha, J.-K.; Min, S. K. JCP. 2022, 156 (17), 174109.

Arribas, E. V.; Vindel-Zandbergen, P.; Roy, S.; Maitra, N. T. PCCP. 2023, 25 (38), 26380–26395.



Calculation settings

● 5 model Hamiltonians are employed for assessing the XF methods.

● Conventional nonadiabatic dynamics methods such as Ehrenfest, FSSH, SDM and BCSH are 

employed as well for the comparative study.

● Exact discrete-variable representation (DVR) dynamics calculations are utilized as the 

reference.

● All computations are conducted through the Libra package.
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Calculation settings

● Model Hamiltonians

Extended Crossing with Reflection (ECWR) & Double Arch Geometry (DAG) → open

Single-Crossing (SC) and Double-Crossing (DC) Holstein  → bound

3-state Esch-Levine model → open & bound

To consider a typical combination of nuclear motions and multiple crossings during the dynamics



ECWR and DAG

● Good testbeds for the implementation!

In the FSSH and Ehrenfest 

dynamics, overcoherence 

is shown after passing the 

NAC region

DAGECWR



ECWR and DAG

● Good testbeds for the implementation!

SDM shows the decoherence, 

whereas it shows the 

“undercoherence” and failed 

to describe the later 

coherence.

DAGECWR



ECWR and DAG

● Good testbeds for the implementation!

The population from BCSH 

shows bumps when the 

density collapse occurs at 

classical turning point.

DAGECWR

𝑭𝑇 𝑡 + Δ𝑡 𝑷 𝑡 + Δ𝑡 ⋅ 𝑭𝑇 𝑡 + Δ𝑡 𝑷 𝑡 < 0



ECWR and DAG

● Good testbeds for the implementation!

Ehrenfest and MFXF, in which 

the decoherence force is 

missing, show the deviation in 

describing the branching.

DAGECWR



ECWR and DAG

● Good testbeds for the implementation!

There are jumps of total 

energy in MQCXF. This extent 

is more severe in MFXF, since 

the energy conservation is not 

expected in the first place.

DAGECWR



SC and DC Holstein model

● Multiple crossings in the bound systems
SC Holstein DC Holstein

In the SC Holstein model, the 

deviation in coherence is more 

pronounced, since the effect of 

wavepacket overlap is more 

frequent.



SC and DC Holstein model

● The MQCXF snapshots of the SC Holstein model

TDPES from the DVR dynamics

TDPES from the MQCXF method
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Cascading classical TDPES reflects on the step 

in the quantum TDPES. 



SC and DC Holstein model

● The MQCXF snapshots of the SC Holstein model

TDPES from the DVR dynamics

TDPES from the MQCXF method

Φ𝑅 𝑡 𝐻𝐵𝑂 Φ𝑅 𝑡 =
σ𝑖 𝜒𝑖 𝑅, 𝑡

2𝐸𝑖(𝑅)

σ𝑎 𝜒𝑎 𝑅, 𝑡 2
≈

1

𝑁𝑡𝑟


𝑖

𝑁𝑡𝑟

𝐶𝑖
𝑘 𝑡

2
𝐸𝑖
𝑘

The MQC methods including MQCXF cannot 

describe the coherence from a pure overlap.

→ missing coherence pattern in the descriptor.

Classical positions on each adiabatic state 

behave independent branches.



SC and DC Holstein model

● The MQCXF snapshots of the SC Holstein model

TDPES from the DVR dynamics

TDPES from the MQCXF method
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Missing coherence in the middle of the 

dynamics eventually leads to the wrong 

branching ratio.



Esch-Levine model

● Open + bound: A multistate example of (de)coherence

BCSH shows the bumps as in 

the ECWR and DAG models 

due to the abrupt collapse of 

density in the turning point.



Esch-Levine model

● Open + bound: A multistate example of (de)coherence

Due to the BC feature, a 

similar pattern is found as well, 

while the drift is less 

pronounced, since the 

electronic EOM contains the 

decoherence directly.



Esch-Levine model

● Open + bound: A multistate example of (de)coherence

The coherence due to the 

wavepacket overlap cannot be 

fully described.



Esch-Levine model

● The MQCXF snapshots

Cascading classical TDPES reflects on the step 

in the quantum TDPES. 



Esch-Levine model

● The MQCXF snapshots

Decoherence in wavepacket and branching



Esch-Levine model

● The MQCXF snapshots

This wavepacket overlap is missing in the MQC 

dynamics.



Esch-Levine model

● The MQCXF snapshots

Classical positions on each branch lose its 

coherence, and behave individually.



Method assessment

● The accuracy metrics from the mean square error

Population scores: SHXF > MQCXF > BCSH > SDM ≈ MFXF > FSSH ≈ MF

Coherence scores: BCSH > SHXF > MQCXF > MFXF > SDM > FSSH ≈ MF
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Summary

● The traditional methods without the decoherence correction, FSSH and MF, causes the 

overcoherence.

● While the SDM method shows the decoherence, it yields undercoherence and has difficulty in 

describing the later coherence.

● There are spurious bumps in population and coherence within the branching correction, this 

effect can be diminished by applying the XF-based decoherence correction.

● The SHXF, MQCXF and BCSH methods show the most consistent and reliable results among 

the current set of model Hamiltonians.





Decoherence correction in the nonadiabatic dynamics

● “Overcoherence” problem: the decoherence is missing in the original electronic TDSE.
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