Adsorption & Absorption of Push-Pull Functionalized Stilbene on an Amorphous Silica Glass

Dóra Vörös

Supervisors: Leticia González & Sebastian Mai Libra Summer School 8. June 2024

Libra

My DANSers

Fluorescence

Isomerization /initial isomer

Fluorescence yield¹

4DNS	<i>c</i> -Hex	0.33
	Toluene	0.53
	THF	0.11
	CH_2Cl_2	0.008
	MeCN	< 0.002

 NO_2

4-(N,N-Dimethylamino)-4'- nitrostilbene (DANS)

Detection of microplastics²

polypropylene (PP) low-density polyethylene (LDPE) high-density polyethylene (HDPE) polystyrene (PS) polyethyleneterephtalate (PET)

Detection of adulterated diesel³

IN

NO₂

¹Yang, J. S., & Lin, C. J. (2015). Fate of photoexcited trans-aminostilbenes. J. Photochem. Photobiol. A, 312, 107-120. ²Sancataldo, G., et al., (2021). Identification of microplastics using 4-dimethylamino-4'-nitrostilbene solvatochromic fluorescence. Microsc. Res. Tech., 84(12), 2820-2831. ³Gotor R., et al., (2017). Detection of Adulterated Diesel Using Fluorescent Test Strips and Smartphone Readout. Energy & Fuels, 31, 11594-11600.

Libra

My DANSers

Fluorescence

Isomerization /initial isomer

Prof. Markus Arndt

Ksenija Simonović

4-(N,N-Dimethylamino)-4'- nitrostilbene (DANS)

Filter

Create molecular beam

fluorescence microscopy

Detection on glass via

My DANSers

Fluorescence

Isomerization /initial isomer

NO₂

4-(N,N-Dimethylamino)-4'- nitrostilbene (DANS)

Oelkrug, D., et. Al (1986). Photochemistry on surfaces. Pure and Applied Chemistry, 58(9), 1207-1218.

Libra Summer School 2024

My DANSers Fluorescence Isomerization /initial isomer	N	I,N-Dimethylamino)- hitrostilbene (DANS)		
	TABLE 2. Quantum yields of the photochemical trans - cis isomerization at room temperature of some organic molecules adsorbed on alumina. on alumina in liquid solution S ₁ -excitation S ₂ -excitation S ₁ -excitation S ₂ -excitation			
	azobenzene ${}^{\Phi}_{\substack{\Phi^{\texttt{t,c}}\\c,t}}$	$\begin{array}{cccc} 0.35 \pm 0.10 & 0.20 \pm 0.05 \\ 0.65 \pm 0.05 & 0.55 \pm 0.10 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	stilbene $\substack{\Phi\\ \Phi^{\texttt{t,c}}\\ \texttt{c,t}}$	$\begin{array}{c} 0.05 \pm 0.02 \\ 0.40 \pm 0.10 \end{array}$	$\begin{array}{c} 0.50 \pm 0.05 \\ 0.35 \pm 0.05 \end{array}$	
	thioindigo Φ Φt,c c,t	≈ 10 ⁻⁵	0.15 ± 0.05 0.40 ± 0.10	

Oelkrug, D., et. Al (1986). Photochemistry on surfaces. Pure and Applied Chemistry, 58(9), 1207-1218.

wien wien

Libra Summer School 2024

5

Research Question

How the photophysics/photochemistry of DANS is influenced when it is adsorbed on glass?

 $N - NO_2$

Amorphous Glass

Goals

How does the molecule adsorb on the glass? Stable and unstable orientations?

How does the absorption spectrum vary depending on the adsorption modes?

How does the nonradiative vs. radiative ratio change upon adsorption?

Adsorption in the ground state

Prepare initial orientations

Relax/optimize these initial orientations within periodic boundary conditions at PBE/D3 level of theory and with planewave DFT

Repeat the calculations on 4 different surfaces

Interaction examples

Interaction energy/eV: $E_{G+M} - E_G - E_M$ Charge density differences: $\rho_{G+M} - \rho_G - \rho_M + -$

Libra Summer School 2024

Vörös, D., Angeletti, A., Franchini, C., Mai, S., & González, L. (2023). Adsorption of 4-(N, N-Dimethylamino)-4'-nitrostilbene on an Amorphous Silica Glass Surface. The Journal of Physical Chemistry C, 127(47), 22964-22974.

Libra Summer School 2024

Goals

https://doi.org/10.1021/acs.jpcc.3c05552

How does the molecule adsorb on the glass? Stable and unstable orientations?

How does the absorption spectrum vary depending on the adsorption modes?

How does the nonradiative vs. radiative ratio change upon adsorption?

Computational details

Saturate a unit cell to remove dangling bonds and to obtain cluster

Single point calculations at TD-CAM-B3LYP/def2-SVP with TDA

Gaussian convolution to get absorption spectrum

Libra Summer School 2024

In real space & orthonormal MO basis

Gas phase spectrum

Intense absorption band at low energy (~3.3 eV)

Separated from higher bands (like in experimental)

Libra

Dóra Vörös

Gas phase spectrum

 S_1 highest oscillator strength: excitation from π_2 and CC to π_1 and NO_2 (CT=0.84)

Gas phase spectrum

 S_1 highest oscillator strength: excitation from π_2 and CC to π_1 and NO_2 (CT=0.84)

 S_2 and S_3 are dark $n\pi^*$ localized excitations (CT=0.19)

Dóra Vörös

Variety in the spectra

Bride range of spectral shifts

Position of first bright CT state varies ~0.8 eV (trans) and 1.2 eV (cis)

Intensity of bands varies

Significant effect on electronic excitation

3.45 eV

250 350 450 550

Wavelength (nm)

B1

C1

D1

ref.

B3

cis-DANS

K-Means clustering ONLY with electron-hole correlation matrix

K-Means clustering → principal component analysis

Libra Summer School 2024

Libra

K-Means clustering with electron-hole correlation matrix

Clustering \rightarrow principal component analysis

Small blueshift

Bright CT switches with $n\pi^*$ state \rightarrow mixes with local excitation

Decreased oscillator strength

Parallel to surface

O-H···N HB with NMe₂

Libra

K-Means clustering with electron-hole correlation matrix

Clustering \rightarrow principal component analysis

Strong redshift

Excited electrons drawn more to NO₂

Decreased/increased oscillator strength

Perpendicular (only NO₂) and side-on

O-H···O HB with NO₂

Hole 20 ∑**44%** NO₂ 3 10 10 15 0 \sum **31%** π_1 6 8 11 5 1 0 2 CC 0 3 6 0 10 2 π_2 0 1 1 4 0 NMe_2 0 0 1 0 1 0 SiO_2 0 0 0 0 0 0 NO_2 NMe_2 SiO₂ 38% 22%

Electron

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

5

PC1

10

Libra

K-Means clustering with electron-hole correlation matrix

Clustering \rightarrow principal component analysis

Strongest redshift

Excited electrons drawn more to NO₂

Decreased oscillator strength

Parallel & bended

O-H···O HB with NO₂

strong involvement of glass

Libra Summer School 2024

+ -

 $O-H\cdots N$

Reduced the electron donor capacity of NMe_2

Reduces CT character (increased localization on the nitrophenyl)

Larger part of interaction is from electrostatic part

Blueshift

+ -

0-H…0

Stabilizing the excited electron on NO₂

Enhances push-pull properties (increased CT)

Large part of interaction is from electrostatic part

Strong redshift

Libra Summer School 2024

+ -

Parallel

Can lead to even stronger redshift

Deformation leads to mixing of bright $\pi\pi^*$ state and dark $n\pi^*$

Electrostatic interaction leads to again demixing

Parallel orientation leads to decreased oscillator strength (- polarization)

The strongest interaction, HB to NO₂ has the largest effect

HB reinforces the push-pull effect \rightarrow redshift

Libra Summer School 2024

Goals

https://doi.org/10.1021/acs.jpcc.3c05552

How does the molecule adsorb on the glass? Stable and unstable orientations?

Accepted and soon online

How does the absorption spectrum vary depending on the adsorption modes?

How does the nonradiative vs. radiative ratio change upon adsorption?

1st Challenge: Solid state with big unit cell

Libra Summer School 2024

2nd Challenge: Conical intersection with ground state

Thank you for your FUF COLORAL COLLEGE VIENA-DOCTORAL COLLEGE VIENA-DOCTORAL SCHOOL FHYSICS VIENA DOCTORAL SCHOOL FHYSICS VIENA DOCTORAL SCHOOL FHYSICS VIENA DOCTORAL SCHOOL FHYSICS

Dóra Vörös

Prof. Cesare Franchin

Andrea Angeletti

Felix Proché