Non-Adiabatic Molecular Dynamics
of Ag Nanoclusters using
Semiempirical Methods




Background

e Conversion of solar energy into usable forms is important
e Noble metal nanoclusters have promise in solar photocatalysis, largely due to their
ability to support plasmon-like excited states
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Plasmons

e Coherent, collective oscillation of the conduction band electrons
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e Inother words: a collective excitation involving many different electronic
transitions with nearly the same energy

e Plasmons strongly absorb light at a specific wavelength
o  Wavelength is tunable by changing size/shape of the nanocluster



Plasmon Decay

e Plasmon decay occurs very quickly (within tens of fs)
o Difficult to harness the resulting hot electrons due to fast decay

e Decaytimescales are a property of interest
e Finding nanoclusters with longer decay times could help increase the efficiency of
plasmonic photocatalysts
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Size dependence of Plasmonic Nanoclusters

e Plasmons are well-defined in large nanoclusters with ~100 atoms

e Assize decreases, orbitals change from a continuum to discrete MOs

e Definition of plasmon starts to break down, excited states become excitonic in
character

e Largerenergy gaps between states delays decay and recombination
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Size dependence of Plasmonic Nanoclusters

e Small nanoclusters been shown to have higher photocatalytic activity than larger
nanoparticles

e Transition from plasmonic character to excitonic character as nanocluster size
decreases has important impacts on dynamics

e Investigation using quantum mechanical methods has the potential to elucidate
the structure-property relationship between nanoclusters and plasmonic states
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Non adiabatic molecular dynamics

e Non-adiabatic molecular dynamics (NAMD) is a quantum chemical modeling

method that can simulate excited state dynamics
o Trajectory surface hopping (TSH) - propagates a swarm of independent trajectories along an excited
state PES, with some probability of hopping to lower excited states that increases in regions of strong
non-adiabaticity

e NAMD isvery computationally expensive, especially for larger systems
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Semiempirical Methods

e Hartree-Fock based methods that reduce the number of integrals in the
wavefunction
e Only valence electrons are considered explicitly
o  Minimal basis set used

e Zero differential overlap (ZDO) approximation: p,v, =
o  Overlap matrix S is reduced to a unit matrix
o  One-electron integrals with three centers are set to zero
o Neglect three and four center two-electron integrals

e Specific semiempirical methods make additional approximations
o Differences are mostly in the treatment of two-center integrals

e Parameters based on experimental data are introduced to “replace” neglected
integrals
e Computational cost scales with the number of basis functions



Intermediate Neglect of Differential Overlap
(INDO)

e Neglects two-center, two-electron integrals not of the Coulomb type

e [INDO/S method has been parameterized for Ag nanocluster excited states
o 2-3 orders of magnitude faster than DFT for spectroscopic calculations

e Because INDO/S is HF based and gives a wavefunction, we can use it to calculate
the overlap matrices and NACs

e C(Calculating the NACs using INDO/S can greatly reduce the time it takes to run
NAMD calculations



Methods

e Modeling the excited states of icosahedral Ag135+ nanocluster

e Weinterfaced MOPAC (implementation of the INDO/S hamiltonian) with Libra
o  MOPAC calculates the orbital energies and NACs
o  Libraruns TSH dynamics

e Using NBRA workflow in Libra
e |Initial trajectory was run for 2500 timesteps using DFT with a plane wave basis set
e FSSH algorithm used, 30 initial conditions for 1000 steps each




Results

e 3xdegenerate HOMO and 5x degenerate LUMO

e Slater determinant energies for transitions ranging from HOMO-4 to LUMO+5 were
calculated
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Non-adiabatic couplings

e C(Calculated NACs using both INDO and DFT to compare results
e Computation timeis ~100-1000x faster with INDO than with DFT
e [INDO NACs are ~4x smaller than DFT NACs but qualitatively agree
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Decay from exmted states in the SD basis - INDO
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Decay from excited states in the SD basis

e [INDO decay is significantly slower than DFT decay in the SD basis

o  Off by an order of magnitude in almost all cases
o Lower NACs leads to fewer hops and slower decay
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The Configuration Interaction (Cl) basis

e Cl basis uses a combination of slater determinants to create an excited state
e More accurate than single SD, especially in highly degenerate systems
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Decay from Cl excited states
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Decay from Cl excited states

e Decay from first 30 excited states computed
e No DFT comparison data
e Decay timescales in Cl basis are more in line with expectations
e Average time for decay from the initial state is 339 fs
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Future Directions

e Investigation of poor accuracy of SD NACs and decay times

o Potentially caused by overestimation of d orbital energy by INDO or underestimation of decay times
by DFT

e Analysis of Cl data

o  Examining contributions to excited states
e Improving accuracy of NAMD with different surface hopping algorithms
e Application to larger systems
e Moving beyond NBRA
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