Excitons in Hematite Fe₂O₃

1- Electronic Structure

2- Short-time Dynamics from TD-DFT and non-Adiabatic Dynamics Theories

Lili Rassouli

Under supervision of Prof. Dupuis

July 2024

Chemical and Biological Engineering University at Buffalo

Libra Workshop and Summer School on Excited States and Nonadiabatic Dynamics 2024

University at Buffalo 西 Department of Chemical University at Burraio

State University of New York State University of New York State University of New York State University of New York

Introduction

- ❑ **Environmental challenges** → turn to **green energies**
- ❑ **Photoelectrochemical cells** (PECs) convert **solar energy to fuels** (chemical energy)
- ❑ Three phases of PECs:
	- 1. light absorption and charge carrier generation
	- 2. charge transport
	- 3. redox reactivity
- ❑ **Hematite = attractive photocatalyst:** abundant, cost-effective, chemically stable, narrow bandgap (high visible light absorption)
- ❑ **Limitations include high charge carrier recombination rate and low carrier mobility**
- ❑ **Experimental results** are available for hematite: **bandgap around 2.1 eV** for a bulk of hematite² and **lifetime around hundreds of ps** for a hematite film. 3,4
- ❑ **Goal:** characterize, understand, and control carrier dynamics

1- J. Yang *et al.*, *Accounts of Chemical Research*, 2013, 46, 1900.

2- S.I. Srikrishna Ramya, C.K. Mahadevan, *Journal of Solid State Chemistry*, 2014, 211, 37.

3- A.G. Joly *et al.*, *Journal of Applied Physics*, 2006, 99.

4- Z. Zhou *et al.*, *Journal of the American Chemical Society*, 2017, 139, 6707.

Photocatalyst

Methods

1- B. Smith, M. Shakiba, A. V. Akimov, *Journal of Chemical Theory and Computation*, 2021, 17, 678.

2- M. Shakiba *et al.*, *Journal of Chemical Theory and Computation*, 2022, 18, 5157.

- 3- A. V. Akimov, *The Journal of Chemical Physics*, 2021, 155, 134106.
- 4- A.V. Akimov, J. Comput. Chem, 2016, 37, 1626−1649.

Results: Exciton Structure in small cell

Results: Exciton Structure in 2×2×3 supercell

 $CB_{min} = Fe(3d)$

electron LUMO localization (~80%) over two Fe atoms at the centers of two edge-sharing octahedra belonging to a basal plane

in-phase (bonding)shortening

hole HOMO localization (~ 50%) over the four equatorial O atoms of an FeO⁶ octahedron

out-of-phase (anti-bonding) shortening

L. Rassouli, M. Dupuis *The Journal of Chemical Physics C,* 2024, *128*, 743–758.c

Results: Dynamics of Exciton using Libra

Conclusion

- ❖ **Electron excitation from O 2p states to Fe 3d**
- ❖ **Exciton self-traps into stable electron-hole pair**
- ❖ **Hole localization on (FeO⁶) ⁺ octahedral in HOMO**
- ❖ **Electron localization on (FeFe) - in accordance with previous computational studies ¹**
- ❖ **Computed recombination time is 1210 ps**
- ❖ **Computed relaxation time is in fs range**

[https://github.com/compchem](https://github.com/compchem-cybertraining/Tutorials_Libra/tree/75701a6114782d1597cf5b1931c0cce42096b9e0/6_dynamics/2_nbra_workflows)[cybertraining/Tutorials_Libra/tree/75701a6114782d1597cf5b1931c0cce42096b9e0/6_dyna](https://github.com/compchem-cybertraining/Tutorials_Libra/tree/75701a6114782d1597cf5b1931c0cce42096b9e0/6_dynamics/2_nbra_workflows) [mics/2_nbra_workflows](https://github.com/compchem-cybertraining/Tutorials_Libra/tree/75701a6114782d1597cf5b1931c0cce42096b9e0/6_dynamics/2_nbra_workflows)

https://github.com/compchem-cybertraining/Tutorials_Libra/blob/master/VIDEOS.md

Email:

lilirass@buffalo.edu

Many-body excitation

The non-adiabatic coupling coefficients between excited states were calculated based on many-body (MB) treatment of excited states rather than single particle (SP) treatment. The MB approach provides a more accurate treatment of excited states because the SP approach neglects the interaction between electronic states and relies on the properties of single-electron molecular Kohn-Sham orbitals to calculate state energies and NACs. In contrast, the MB approach involves a linear combination of single-particle excitations for each excited state, considering the weight of different contributions. Since the excited states of small molecules are almost always multiconfigurational, even for low-lying excited states, the SP description is inadequate, and many-body effects must be considered.

neglect-of-back-reaction approximation: NBRA

During excitation and relaxation, the electronic states change, but the NBRA neglects the effect of new electronic states (electronic state transitions) on nuclear evolution

Many-body excitation

Ground state