Investigating the Excited State Properties of Photoactive TiO₂ Nanoclusters through Non-Adiabatic Molecular Dynamics

Miguel Recio-Poo, Francesc Illas, Stefan T. Bromley, Alexey V. Akimov, Ángel Morales-

García

Departament de Ciència de Materials i Química Física Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona

miguelrecio@ub.edu

Institut de Química Teòrica i Computacional UNIVERSITAT DE BARCELONA

OUTLINE

- 1. Motivation and previous research
- 2. Methodology Libra/CP2K workflow
- 3. First project: role of water and benchmark analysis

4. Second project: recombination or relaxation in small bare NPs

5. Conclusions

Water splitting: a simple idea

- Clean energy production but **against** thermodynamics
- Need of external energy -> photocatalytic water splitting
- Anatase titania (TiO₂) nanoparticles potential solution
- BG is too large. Absorbs only a **small fraction** of solar spectrum.
- It is inert enough, and can be functionalized -> DSSC

Previous research

Previous studies based on time-domain version of the Kohn-Sham DFT (KS-DFT):

Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO₂ Nanoparticles

Daeheum Cho,[†] Kyoung Chul Ko,^{†,‡} Oriol Lamiel-García,[‡] Stefan T. Bromley,^{‡,§} Jin Yong Lee,^{*,†}

Review

Article

pubs.acs.org/CF

Theoretical Approaches to Excited-State-Related Phenomena in

Carmen Sousa,[†] Sergio Tosoni,^{†,‡} and Francesc Illas^{*,†}

[†]Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain

[‡]Departamento de Química, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran

A single-particle treatment inadequate for quantitative characterization of the dynamics in systems as TiO₂ nanostructures. More rigorous (linear-response, LR) time-dependent DFT (TD-DFT) framework needed.

Miguel Recio Poo

Previous research

Non-Adiabatic Molecular NA-MD trusted as the suited technique to investigate the dynamics of excited states

Article

pubs.acs.org/JPCC

THE JOURNAL OF PHYSICAL CHEMISTRY C CITE This: J. Phys. Chem. C 2018, 122, 5201-5208

Size and Shape Effects on Charge Recombination Dynamics of $\text{TiO}_{\rm 2}$ Nanoclusters

PHYSICAL CHEMISTRY

Yeonsig Nam,[†] Linqiu Li,[‡] Jin Yong Lee,^{*,†}[©] and Oleg V. Prezhdo^{*,‡}[©]

[†]Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea [‡]Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States

Supporting Information

Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO₂

Walter R. Duncan and Oleg V. Prezhdo

Department of Chemistry, University of Washington, Seattle, Washington 98195; email: nrezhdo@u.washington.edu

pubs.acs.org/JPCL

Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO₂ Nanoparticles

Yeonsig Nam,^{†,‡} Linqiu Li,[‡] Jin Yong Lee,^{*,†}⁶ and Oleg V. Prezhdo^{*,‡}⁶

[†]Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea

[‡]Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States

Cite This: J. Phys. Chem. Lett. 2019, 10, 2676–2683

Lack of research concerning the influence of water on photoactive nanostructures when adsorbed in their surfaces

Methodology - Libra/CP2K workflow

First project: water effect and benchmark analysis

Benchmark the used TD-DFT and NA-MD methodologies for their further applications to bigger photoactive nanostructures

Investigate the dependence of static excited state properties and excited state dynamics on the nanocluster size and hydration degree.

First project: water effect and benchmark analysis

First project (step I)

The atomic vibrational frequencies of our titania clusters along the 3000 fs runs let us easily compare the performance of either methodology.

Miguel Recio Poo

First project (step I)

Anharmonic effects in AIMD approach -> lower frequency values but also busier vibrational densities

Power spectra are qualitatively the same -> tested FFs are accurate to act as computationallyefficient counterparts to DFT calculations

Miguel Recio Poo

First project (step II)

First project (step II)

FT of δE_{ij} gives rise to the influence spectra, which shows up the vibrational modes responsible for S0 to S1 transition

Bare case: $S_1 \rightarrow S_0$ transition is driven by the Ti-O-Ti angle bending mode Hydrated clusters: **driven by** bending and stretching **modes Hydroxyl** related **modes not coupled to the** $S_1 \rightarrow S_0$ **transition**

Miguel Recio Poo

First project (step II)

Larger electronic densities located around the Ti-O bonds. Consistent with the spectra.

Excited state of **bare shows larger transition dipole moment**. Increasing **degree of hydration** -> excited state becomes **more symmetric**, leading to smaller TDM

First project (step III)

Hammes-Schiffer-Tully (HST) approach for computing NACs: $d_{IJ}\left(t + \frac{dt}{2}\right) \approx \frac{\langle \Psi_I(t) | \Psi_J(t + \Delta t) \rangle - \langle \Psi_I(t + \Delta t) | \Psi_J(t) \rangle}{2dt}$ where $\langle \Psi_I(t) | \Psi_J(t + \Delta t) \rangle$ stands for the time overlaps computed in the previous step

Miguel Recio Poo

First project (step III)

First project (step IV)

Pre-computed energies (E_I) and NACs (d_{IJ}) are used to construct **the vibronic Hamiltonian** at every timestep of the trajectory

Trajectory surface hoping (TSH) algorithms: FSSH, mSDM, DISH, IDA

30 initial conditions x 500 realizations = **15000 trajectories per methodology**. NA-MD runs are **initialized in S₁** in all of them. Decay evolution fitted to exponential fitting functions

First project (step IV-problematics)

$(TiO_2)_4 (H_2O)_4 AIMD + B3LYP$

Miguel Recio Poo

First project (step IV-problematics)

$(TiO_2)_4 (H_2O)_4 AIMD + B3LYP$

If we include 5 states in our dynamical basis... we have these sudden changes in Ground State population evolution

Method: FSSH, ntraj: 200, files: 1000-4000, steps: 3000

First project (step IV-problematics)

$(TiO_2)_4 (H_2O)_4 AIMD + B3LYP$

By increasing the number of excited states in our dynamical basis -avoiding crosses with states that are not included in the basis- we can overcome our problem with the sudden changes in states pop. evolution

Method: FSSH, ntraj: 200, files: 1000-2000, nsteps: 2000

Miguel Recio Poo

In all cases FSSH yields shorter e⁻-h⁺recombination times

Faster recombination evolution with increasing degree of hydroxylation

Miguel Recio Poo

First project (step IV)

mSDM method involves a complex description leading to the elimination of coherences and thus to larger decay

Hybrid TD-DFT functionals give rise to faster S₁-S₀ recombination

Good agreement in final results between ffMD and AIMD!!

(TiO₂)₈(H₂O)₂ provides **longer times** – **more convenient** for photocatalysis

Second project: recombination or relaxation?

pubs.acs.org/JPCL

Letter

Oscillation in Excited State Lifetimes with Size of Sub-nanometer Neutral (TiO₂)_n Clusters Observed with Ultrafast Pump–Probe Spectroscopy

Jacob M. Garcia, Lauren F. Heald, Ryan E. Shaffer, and Scott G. Sayres*

sub-picosecond excited state lifetime (τ) is attributed to rapid internal conversion returning to the ground state.

Second project: Wigner sampling

Second project

Several orders of magnitude bigger than the experimental times

Second project

Average timescale: 5.00+-2.08 ps

Average timescale: 33.67+-14.65 ps

Several orders of magnitude bigger than the experimental times

Second project: trajectory aligment

Second project: Oscillator Strength TiO₂

Miguel Recio Poo

Second project: TiO₂

- ✓ Libra (interchanged with CP2K) provides a complete workflow to analyse excited state dynamics in titania systems.
- ✓ Influence of water in general reduce recombination times, as NACs increase. Methodology assessment: ffMD is efficient counterpart to AIMD. Hybrid functionals give rise to faster S₁-S₀ recombination.
- ✓ Small anhydrous calster undergo fast relaxation among optical levels that has been overlooked in experimental research.

ACKNOWLEDGMENTS

Alexey V. Akimov

Stefan T. Bromley

Ángel Morales García

Francesc Illas

la Unión Europea NextGenerationEU

gencat.cat

R

Generalitat de Catalunya

RED ESPAÑOLA DE SUPERCOMPUTACIÓN

Miguel Recio Poo