



# Nonadiabatic Dynamics in Metal Halide Perovskites

#### Wei Li (李位)

School of Chemistry and Materials Science Hunan Agricultural University

# Outline

#### **1.** Theoretical methodologies:

- a. Interlayer carrier dynamics in 2D perovskites.
- b. Spin-orbital coupling in nonadiabatic dynamics.
- c. Hamiltonian repetition method for long-time nonadiabatic dynamics.
- 2. Why can quantum dynamics teach about perovskites:
  - a. Why many defects are benign?
  - b. Mechanisms of defect passivation.
  - c. Unusual T and P dependence.





#### Best Research-Cell Efficiencies

CINREL



## **3D/2D** Perovskites

Generic formula: ABX<sub>3</sub>, BX<sub>6</sub> octahedral CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>



☑ Low exciton binding energy, ~19 meV
 ☑ Long carrier diffusion length
 ☑ High absorption coefficients
 ☑ Low recombination rate

× stability issue (Humidity, Light, Thermal)



☑ High stability (Hydrophobicity of spacer cations)
 ☑ Structural tunability

## **Interlayer Charge Transport in 2D Perovskites**



The interlayer charge transfer is limited by the insulating nature of spacer cations!



## **Marcus Electron Transfer**



 $V_{kl}$ : diabatic coupling between localized states (non-local electron-phonon coupling)

 $\lambda$ : reorganization energy (local electron-phonon coupling)

 $\Delta \mathbf{G}$ : barrier height, zero for equivalent layer

#### Methods for diabatization:

- block diagonalization
- generalized Mulliken-Hush method
- fragment charge difference
- fragment energy difference
- projection methods
- fragment orbital density functional theory
- constrained density functional theory
- block-localized wavefunction theory

#### **Projection-operator Diabatization (POD) Approach**

- Kohn-Sham Hamiltonian expressed in terms of orthogonalized atomic orbital basis set is partitioned in donor and acceptor blocks
- coupling matrix between donor and acceptor states are identified transformed matrix elements of the off-diagonal block

$$\psi^{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{n} e^{i\mathbf{k}\mathbf{R}_{\mathbf{n}}} \sum_{i} C_{i}^{\mathbf{k}} \phi_{i}^{\mathbf{k}} \left(\mathbf{r} - \mathbf{R}_{\mathbf{n}}\right)$$

The Bloch function can be expressed as linear combination of atomic orbital basis

$$H^{\mathbf{k}} = \sum_{n} e^{i\mathbf{k}\mathbf{R}_{n}} \langle \phi_{i}(\mathbf{r}) | H | \phi_{j}(\mathbf{r} - \mathbf{R}_{n}) \rangle$$

$$S^{\mathbf{k}} = \sum_{n} e^{i\mathbf{k}\mathbf{R}_{n}} \langle \phi_{i}(\mathbf{r}) | S | \phi_{j}(\mathbf{r} - \mathbf{R}_{n}) \rangle$$

Löwdin symmetric procedure:

$$|\tilde{\phi}_i\rangle = \sum_j S_{ji}^{1/2} |\phi_j\rangle \qquad \widetilde{H} = S^{-1/2} H S^{-1/2}$$

Diabatic energy:

$$\varepsilon_{DD} = T_D^+ \widetilde{H}_{DD} T_D; \ \varepsilon_{AA} = T_A^+ \widetilde{H}_{AA} T_A$$

$$T_{A}^{+} \begin{bmatrix} \widetilde{H}_{D} & \widetilde{H}_{DA} \\ \widetilde{H}_{AD} & \widetilde{H}_{A} \end{bmatrix} T_{D} = \begin{bmatrix} \varepsilon_{D} & V_{DA} \\ V_{AD} & \varepsilon_{A} \end{bmatrix}$$

J. Comput. Theory Chem., 2023, **19**, 9403

### Workflow: interfacing with OpenMX





#### **Alkyl Length-dependent Interlayer Charge Transfer**



Ye et al., Nature Comm., 2020, **11**, 5481 Boeije et al. J. Am. Chem. Soc. 2023, **145**, 21330

J. Comput. Theory Chem., 2023, **19**, 9403

## **Charge Transfer Couplings**







- Hole transfer coupling is larger than electron transfer coupling
- Thermal fluctuation enhances the electronic coupling
- Longer organic cations decrease the electronic coupling

J. Comput. Theory Chem., 2023, 19, 9403

## **Electron and Hole Hopping Time**

Table 1. Parameters for Interlayer Charge Transfer Computed for the Investigated 2D Layered Perovskites and Corresponding Transition Rates and Mobilities<sup>a</sup>

|        |   | $V_{kl} \ ({ m meV})$ | $\langle V_{kl}^{2} \rangle^{1/2} \; ({ m meV})$ | $\sigma_{ m V}~({ m meV})$ | $\lambda$ (eV) | $	au_{ m Marcus}$ | $\mu_{ m hop}~( m cm^2~V^{-1}~s^{-1})$ |
|--------|---|-----------------------|--------------------------------------------------|----------------------------|----------------|-------------------|----------------------------------------|
| C4PbI  | L | $8.7 \times 10^{-2}$  | 1.10                                             | 1.08                       | 0.83           | 137.6 ns          | $4.46 \times 10^{-6}$                  |
|        | Н | 0.36                  | 7.44                                             | 7.41                       | 1.08           | 38.5 ns           | $1.59 \times 10^{-5}$                  |
| C8PbI  | L | $1.38 \times 10^{-4}$ | $1.73 \times 10^{-2}$                            | $1.72 \times 10^{-2}$      | 0.97           | 2.3 ms            | $6 \times 10^{-10}$                    |
|        | Н | $1.98 \times 10^{-3}$ | 0.73                                             | 0.65                       | 0.54           | 18.8 ns           | $7.35 \times 10^{-5}$                  |
| C12PbI | L | $4.34 \times 10^{-5}$ | $3.2 \times 10^{-3}$                             | $3 \times 10^{-3}$         | 1.18           | 572.0 ms          | $3.99 \times 10^{-12}$                 |
|        | Н | $3.95 \times 10^{-3}$ | $6.46 \times 10^{-2}$                            | $6.43 \times 10^{-2}$      | 1.11           | 690.2 μs          | $3.31 \times 10^{-9}$                  |

<sup>*a*</sup>HOCO–HOCO (H) and LUCO–LUCO (L) electronic couplings for the 0 K structures ( $V_{kl}$ ) and canonically averaged electronic couplings from the MD simulations ( $\langle V_{kl}^2 \rangle^{1/2}$ ), along with its standard deviation ( $\sigma_V$ ); the averaged reorganization energy ( $\lambda$ ); the hole and electron hopping time obtained from Marcus theory ( $\tau_{Marcus}$ ); and the carrier mobility calculated based on the Marcus hopping rate ( $\mu_{hop}$ ).

The key is to obtain the donor-acceptor energy splitting

- Electron transfer
- Insider layer, electronic coupling is zero, basis is orthogonal; but NAC is non-zero
- **Between layers**, electronic coupling is non-zero; but NAC vanishes

- The excited state is approximately by perturbation of ground state charge density.
- The charge is constrained at one layer through adding/removing electrons and then hop to another layer.
- The splitting between donor and acceptor site energies characterizes the ET process within the two state picture.









PEA has 10<sup>-6</sup> - 10<sup>-7</sup> cm<sup>2</sup>/V/s outof-plane carrier mobility, this gives 100 ns – 1 us hopping time

$$\mu_{\rm hop} = \frac{eD}{k_{\rm B}T} = \frac{ek_{\rm Marcus}L^2}{k_{\rm B}T}$$

Boeije et al. J. Am. Chem. Soc. 2023, 145, 21330

|        |   | < V <sup>2</sup> > <sup>1/2</sup><br>(meV) | λ<br>(eV) | τ <sub>Marcus</sub> | $	au_{DISH}$ | D <sub>COM</sub><br>(Å) | μ <sub>Marcus</sub><br>(cm²/V/s) | μ <sub>DISH</sub><br>(cm <sup>2</sup> /V/s) |
|--------|---|--------------------------------------------|-----------|---------------------|--------------|-------------------------|----------------------------------|---------------------------------------------|
| BAPhI  | L | 1.10                                       | 0.83      | 137.6 ns            | 24.0ns       | 12.6                    | 4.46 10-6                        | 2.6 10-5                                    |
| DIMOI  | Н | 7.44                                       | 1.08      | 38.5 ns             | 5.2ns        | 12.0                    | 1.59 10 <sup>-5</sup>            | 1.2 10-4                                    |
| PEAPbI | L | 0.13                                       | 0.66      | 1.7 us              | 17.9µs       | 15.94                   | 5.8 10-7                         | 5.5 10-8                                    |
|        | Η | 0.27                                       | 0.60      | 210 ns              | 5.3µs        |                         | 4.7 10-6                         | 1.8 10-7                                    |

### **Spin-orbit Interactions in Nonadiabatic Dynamics**

$$\begin{aligned} (\hat{h}^{\text{KS}} + \hat{h}^{\text{SOC}})\psi_i^{\text{adi}} &= \epsilon_i^{\text{adi}}\psi_i^{\text{adi}} \\ \psi_i &= \phi_i^{\alpha}\alpha + \phi_i^{\beta}\beta = \begin{pmatrix} \phi_i^{\alpha} \\ \phi_i^{\beta} \end{pmatrix}, \quad i = 1, ..., N \\ d_{ij}\left(t + \frac{dt}{2}\right) &\equiv \frac{\langle \Phi_i(t)|\Phi_j(t+dt)\rangle - \langle \Phi_i(t+dt)|\Phi_j(t)\rangle}{2dt} \\ \langle \psi_i(t)|\psi_j(t')\rangle &= (\phi_i^{\alpha}(t)\phi_j^{\beta}(t)) \begin{pmatrix} \phi_j^{\alpha}(t') \\ \phi_j^{\beta}(t') \end{pmatrix} \\ &= \langle \phi_i^{\alpha}(t)|\phi_j^{\alpha}(t')\rangle + \langle \phi_i^{\beta}(t)|\phi_j^{\beta}(t')\rangle \end{aligned}$$

ACS Energy Lett., 2018, **3**, 2159

#### Wavefunctions are expressed as two-component spinors



#### **Spin-orbit Interactions in Nonadiabatic Dynamics**



### **Spin-orbit Interactions in Nonadiabatic Dynamics**



- Hole relaxation faster than electron relaxation denser DOS for holes
- Spin-orbit interaction greatly speeds up relaxation larger NA coupling

#### Hamiltonian Repetition in Nonadiabatic Dynamics

 $\sigma_X^2 = \sum p_i' (a_i - \overline{a})^2$ 

Repetition should capture the essential feature of the Hamiltonian



J. Phys. Chem. Lett., 2022, 13, 9688

### Hamiltonian Repetition in Nonadiabatic Dynamics



The overestimation or underestimation does not directly depend on the dispersion of frequencies

Convergence hard to achieve for the data sets involving low-frequency modes

The repetition approach becomes inaccurate in simulations with very small NACs

![](_page_19_Figure_5.jpeg)

J. Phys. Chem. Lett., 2022, 13, 9688

## **Iodine Interstitials Suppress Recombination**

![](_page_20_Figure_1.jpeg)

- Hole trapping is fast, but recombination of trapped hole with free electron is slow because wavefunction overlap is small
- Hole can be trapped and de-trapped multiple times before recombining, increasing free carrier lifetimes

![](_page_20_Figure_4.jpeg)

ACS Energy Lett., 2017, 2, 1270

## **Pb Vacancy Slows Down Carrier Cooling**

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

- Pb vacancy increase the structural ordering, decreases fluctuations of Pb and I atoms, and reduces NA couplings
- Pb vacancy introduces intraband states capable of trapping hot holes, slowing down its cooling further

Inorgan. Chem. Front., 2024, **9**, 5549

### **Oxidization States of Iodine Vacancy**

![](_page_22_Figure_1.jpeg)

|                        | Recomb. time | Mechanism             |
|------------------------|--------------|-----------------------|
| Pristine               | 152ns        | CBM->VBM              |
| Missing I <sup>-</sup> | 136ns        | CBM->VBM              |
| Missing I              | 27ns         | CBM->VBM, via trap    |
| Missing I <sup>+</sup> | 3ns          | Sequential (via trap) |

**Missing I**<sup>-</sup>: Lose an electron enlarges the Pb-Pb distance due to Coulomb repulsion, and creates no trap states

Missing I: create shallow trap

**Missing I**<sup>+</sup>: Capture of an electron shortens the Pb-Pb distance and form Pb-Pb dimer due to Coulomb attraction, create deep trap

![](_page_22_Figure_6.jpeg)

J Am. Chem. Soc. 2018, **140**, 15753

#### **Temperature-dependent Carrier Lifetime**

![](_page_23_Figure_1.jpeg)

|       |       |                |              |                         |              | $\bigcirc$                                   |            |
|-------|-------|----------------|--------------|-------------------------|--------------|----------------------------------------------|------------|
|       | d (Å) | $\theta$ (deg) | $(eV)^{E_g}$ | $(eV)^{\sigma_{\rm E}}$ | NAC<br>(meV) | $\begin{pmatrix} T_2^*\\ (fs) \end{pmatrix}$ | $T_1$ (ns) |
| 100 K | 2.975 | 170.5          | 1.48         | 0.088                   | 1.14         | 7.9                                          | 0.89       |
| 200 K | 2.971 | 168.7          | 1.60         | 0.12                    | 1.34         | 5.9                                          | 1.22       |
| 300 K | 2.970 | 165.8          | 1.75         | 0.15                    | 1.80         | 4.7                                          | 1.45       |
|       |       |                |              |                         |              |                                              |            |

- Higher T increases rotational disorder of organic cations which suppresses fluctuation of Pb-I lattice in hybrid organic-inorganic perovskite
- Higher T activates broad range of phonon modes, accelerating puredephasing in all-inorganic perovskite

Inorgan. Chem. Front., 2022, **9**, 5549 J. Phys. Chem. Lett. 2019, **10**, 6219 ACS Energy Lett., 2018, **3**, 2713

#### Anti-correlation between Carrier Lifetime and Eg

![](_page_24_Figure_1.jpeg)

|                     |     | Energy   | NAC   | Dephasing | Lifetime |
|---------------------|-----|----------|-------|-----------|----------|
|                     |     | Gap (eV) | (meV) | Time (fs) | (ns)     |
|                     | 0   | 1.90     | 0.52  | 6.05      | 10.32    |
| MAPbBr <sub>3</sub> | -2% | 1.85     | 0.53  | 5.32      | 12.49    |
|                     | -4% | 1.84     | 0.55  | 4.90      | 12.63    |
|                     | 0   | 1.46     | 0.58  | 4.93      | 0.38     |
| FAPbBr <sub>3</sub> | -2% | 1.26     | 0.63  | 4.34      | 0.35     |
|                     | -4% | 1.02     | 0.66  | 3.39      | 0.30     |

- The larger band gap variations is induced by stronger Pb-s/Br-p overlap, facilitated by the larger Pb-Br-Pb angle
- Compression suppresses the fluctuations of organic cations, unlocks the Pb-Br vibration and enhance the electron-phonon interactions

Kong et al, PNAS, 2016, 113, 8910

Chem. Mater. 2020, **32**, 4707 Chem. Mater., to be submitted

## Summary

- Longer alkyl chain slows down interlayer CT
- SOC accelerates nonradiative dynamics
- Simple Hamiltonian repetition extends the NA-MD time scale
- Defects trap/de-trap free charges (softness)
- Breaking the hybridization of dangling states passivate defect states
- Disorder (unusual T and P dependence)

# Acknowledgements

#### Collaborators

- Oleg Prezhdo (U Southern California, U.S.)
- Alexey V. Akimov (U Buffalo, U.S.)
- David Beljonne (UMONS, Belgium)
- Zhufeng Hou (CAS, China)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

Deyang, Pingzhi, me, Zhiguo, Junguang Jiayi, Ting, Xueying, Ning